Insights into nitrogen removal from seawater-based wastewater through marine anammox bacteria under ampicillin stress: Microbial community evolution and genetic response

2021 ◽  
pp. 127597
Author(s):  
Jin Li ◽  
Fei Gao ◽  
Xiuqin Chen ◽  
Yulong Zhang ◽  
Huiyu Dong
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Chunzhen Zou ◽  
Beibei Guo ◽  
Xuming Zhuang ◽  
Liying Ren ◽  
Shou-Qing Ni ◽  
...  

Abstract The effects of FeS on nitrogen removal performance and microbial community of anammox process were studied. During the start-up period, the removal efficiencies of nitrite and total nitrogen were significantly improved by FeS. The addition of FeS increased the content of iron ions in the reactor and promoted the synthesis of heme c, which was involved in the formation of various enzymes. Compared with the control, the abundance of anammox bacteria in the FeS reactor was increased by 29%, and the expression level of the nirS gene (encoding cd1 type nitrite reductase containing heme) was nearly doubled. The content of nitrite reductase (ammonia-forming) in the community was increased by 26.4%. The difference in functional bacteria and enzyme contents in the microbial community resulted in a difference in nitrogen removal rate (NRR) between the two reactors. High-throughput results indicated that FeS increased the richness and diversity of microbial community and enhanced the metabolic function of the microbial community. The addition of FeS did not change the dominant position of Ca. Kuenenia in both reactors. But the relative abundance of heterotrophic denitrifying bacteria was reduced with FeS, which may be related to the inhibition effect of S2− produced by FeS.


2015 ◽  
Vol 71 (5) ◽  
pp. 725-733 ◽  
Author(s):  
Zeng Taotao ◽  
Li Dong ◽  
Zeng Huiping ◽  
Xie Shuibo ◽  
Qiu Wenxin ◽  
...  

An upflow anaerobic biofilter (AF) was developed to investigate anaerobic ammonium-oxidizing (ANAMMOX) efficiency in treating low-strength wastewater at ambient temperature (15.3–23.2 °C). Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization were used to investigate treatment effects on the microbial community. Stepwise decreases in influent ammonia concentration could help ANAMMOX bacteria selectively acclimate to low-ammonia conditions. With an influent ammonia concentration of 46.5 mg/L, the AF reactor obtained an average nitrogen removal rate of 2.26 kg/(m3 day), and a removal efficiency of 75.9%. polymerase chain reaction-DGGE results showed that microbial diversity in the low matrix was greater than in the high matrix. Microbial community structures changed when the influent ammonia concentration decreased. The genus of functional ANAMMOX bacteria was Candidatus Kuenenia stuttgartiensis, which remained stationary across study phases. Visual observation revealed that the relative proportions of ANAMMOX bacteria decreased from 41.6 to 36.3% across three study phases. The AF bioreactor successfully maintained high activity due to the ANAMMOX bacteria adaptation to low temperature and substrate conditions.


Archaea ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ruili Yang ◽  
Wenlong Mao ◽  
Xiaojun Wang ◽  
Zhaoji Zhang ◽  
Junbin Wu ◽  
...  

Responses of a microbial community in the completely autotrophic nitrogen removal over nitrite (CANON) process, which was shocked by a pH of 11.0 for 12 h, were investigated. During the recovery phase, the performance, anaerobic ammonia oxidation (anammox) activity, microbial community, and correlation of bacteria as well as the influencing factors were evaluated synchronously. The performance of the CANON process deteriorated rapidly with a nitrogen removal rate (NRR) of 0.13 kg·m-3·d-1, and Firmicutes, spore-forming bacteria, were the dominant phyla after alkaline shock. However, it could self-restore within 107 days after undergoing four stages, at which Planctomycetes became dominant with a relative abundance of 64.62%. Network analysis showed that anammox bacteria (Candidatus Jettenia, Kuenenia, and Brocadia) were positively related to some functional bacteria such as Nitrosomonas, SM1A02, and Calorithrix. Canonical correspondence analysis presented a strong correlation between the microbial community and influencing factors during the recovery phase. With the increase of nitrogen loading rate, the decrease of free nitrous acid and the synergistic effects, heme c content, specific anammox activity (SAA), NRR, and the abundance of dominant genus increased correspondingly. The increase of heme c content regulates the quorum sensing system, promotes the secretion of extracellular polymeric substances, and further improves SAA, NRR, and the relative abundance of the dominant genus. This study highlights some implications for the recovery of the CANON reactor after being exposed to an alkaline shock.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87593-87606 ◽  
Author(s):  
Duntao Shu ◽  
Yanling He ◽  
Hong Yue ◽  
Junling Gao ◽  
Qingyi Wang ◽  
...  

The anaerobic ammonium oxidation (anammox) process has mainly been applied to NH4+–N-rich wastewater with very low levels of organic carbon (<0.5 g COD per g N).


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Liqiu Zhang ◽  
Wei Lv ◽  
Shugeng Li ◽  
Zhongxuan Geng ◽  
Hainan Yao

Nitrogen removal characteristics and the comparison of the microbial community structure were investigated in different anaerobic ammonia oxidation (Anammox) reactors: an anaerobic sequencing batch reactor (ASBR) and a biofilter reactor. The Anammox systems were inoculated with sludge from the second settling tank of a wastewater treatment plant in Guangzhou, China. After successful start up of Anammox, the microbial community structure of different Anammox reactors were studied through high-throughput sequencing. The results showed that anaerobic ammonium oxidation in the ASBR reactor could successfully start up after 134 days, while Anammox in the biofilter could start up after 114 days. In both systems, total nitrogen removal was at 80% after more than 200 days of operation. The diversity of denitrifying microorganisms was high in both reactors, with Planctomycetes as the main taxa. Anammox bacteria belonging to the genera Candidatus Anammoxoglobus and Kuenenia, were dominant in the ASBR, while all three genera of Candidatus, Anammoxoglobus, Kuenenia, and Brocadia, could be detected in the biofilter reactor. Therefore, the biofilter starts up faster than the ASBR, and contains richer species, which makes it more suitable to domesticate Anammox bacteria.


Sign in / Sign up

Export Citation Format

Share Document