Superhydrophobic, electrically conductive and multifunctional polymer foam composite for chemical vapor detection and crude oil cleanup

2021 ◽  
pp. 127697
Author(s):  
Yiyao Li ◽  
Jun Yan ◽  
Ling Wang ◽  
Juntao Li ◽  
Junchen Luo ◽  
...  
Langmuir ◽  
2012 ◽  
Vol 28 (14) ◽  
pp. 6192-6200 ◽  
Author(s):  
James E. Royer ◽  
Chengyi Zhang ◽  
Andrew C. Kummel ◽  
William C. Trogler

2007 ◽  
Vol 329 ◽  
pp. 631-636 ◽  
Author(s):  
Sadao Sano ◽  
Kiyoshi Suzuki ◽  
Wei Li Pan ◽  
Manabu Iwai ◽  
Yoshihiko Murakami ◽  
...  

Polycrystalline diamond (PCD) exhibits a thermal conductivity similar to that of the electrically conductive chemical vapor deposition diamond (EC-CVD diamond) found to function as zero-wear electrodes at short pulse duration. In this study, PCD was used as electrodes applied to EDM on tungsten carbide. Two kinds of PCD (CTB-010 and CTH-025) with a flat surface were used. The wear of the PCD electrodes was about 1.5% for very short pulse duration such as te=1μs, but it was zero wear at te=30μs, though the wear of a Cu-W electrode was 10% even on the machine recommended conditions for the low wear. EDM experiment using a V-shaped PCD electrode with an included angle of 45° was also carried out and the performance was compared with the case using a V-shaped Cu-W electrode. Under the conditions of a no load voltage of 60V, a set peak current of 2A, and a medium pulse duration of te=15μs, there was no wear on PCD electrodes when observed under the SEM, whereas a 50μm-deep wear on the Cu-W electrodes even under the machine recommended condition for the low wear was observed.


2018 ◽  
Vol 6 (21) ◽  
pp. 10036-10047 ◽  
Author(s):  
Jiefeng Gao ◽  
Hao Wang ◽  
Xuewu Huang ◽  
Mingjun Hu ◽  
Huaiguo Xue ◽  
...  

A superhydrophobic and electrically conductive blend nanofibrous membrane was prepared for high performance chemical vapor sensors.


2008 ◽  
Vol 55-57 ◽  
pp. 509-512 ◽  
Author(s):  
M. Kittidechachan ◽  
I. Sripichai ◽  
W. Supakum ◽  
S. Thuamthai ◽  
Suppalak Angkaew ◽  
...  

The fiber optic sensor system for chemical vapor detection was desiged and constructed. The system consisted of three parts; the optic unit, the fiber-optic sensing head and the flow controlling unit. The optic unit included a He-Ne laser source which lazes a red laser into an aligned optical fiber, a photo detector, and a signal processing with computer interface controlled by the Labview® program version 7.1. The sensing head was made of a polyaniline thin film coated onto the de-cladded section of an optical fiber covered by a gas mixing cell. The concentration of measured gas was controlled by varying nitrogen gas flow rate. The nitrogen flow controller was set-up to obtain vapor concentration in the range of 0.04 to 0.40 % v/v. Vapors of hydrochloric acid (HCl) and n-butyl amine (a weak base) were used to test the performance of the sensor system. It was found that output intensity increases with an increasing HCl concentration and decreases with increasing n-butyl amine concentration. The response toward the amine vapor was faster than that of the HCl vapor (23 seconds for n-butyl amine and 72 seconds for HCl). Experiments performed at various concentrations of amine vapor (between 0.04 to 0.21 %v/v) found that a higher concentration yields faster response time.


2013 ◽  
Vol 594-595 ◽  
pp. 760-764 ◽  
Author(s):  
Shafizah Sa'adon ◽  
Anika Zafiah M. Rus

A Red Meranti Wood Dust (RMD) act as a filler for polymer foam composite has been investigated and proved to have ability to absorb sound. In this study, treatment of wood dust with and without acid hydrolysis named as WDB and WDA respectively was use as filler. This study was developed to compare the ability of sound absorption based on treated filler and particle size of wood dust. By choosing the size of 355 μm, three different percentage has been selected which is 10%, 15% and 20% for both conditions. These samples has been tested by using Impedance Tube test according to ASTM E-1050 for sound absorption coefficient, α measurement and Scanning Electron Microscopy (SEM) for determine the porosity for each samples. 10% loaded of WDB as filler gives highest sound absorption coefficient of 0.999 at 4015.63 Hz. Meanwhile for 20% loaded of WDA gives 0.997 at 3228.13 Hz. When comparing the sound absorption coefficient for both sounds absorbing materials, WDB-polymer foam composite RMD showed higher value of sound absorption coefficient, α at higher frequency as compared to WDA-polymer foam composite.


Sign in / Sign up

Export Citation Format

Share Document