Internal nasal morphology of the Eocene primate Rooneyia viejaensis and extant Euarchonta: Using μCT scan data to understand and infer patterns of nasal fossa evolution in primates

2019 ◽  
Vol 132 ◽  
pp. 137-173 ◽  
Author(s):  
Ingrid K. Lundeen ◽  
E. Christopher Kirk
Keyword(s):  
2018 ◽  
Author(s):  
W.F. Hsieh ◽  
Henry Lin ◽  
Vincent Chen ◽  
Irene Ou ◽  
Y.S. Lou

Abstract This paper describes the investigation of donut-shaped probe marker discolorations found on Al bondpads. Based on SEM/EDS, TEM/EELS, and Auger analysis, the corrosion product is a combination of aluminum, fluorine, and oxygen, implying that the discolorations are due to the presence of fluorine. Highly accelerated stress tests simulating one year of storage in air resulted in no new or worsening discolorations in the affected chips. In order to identify the exact cause of the fluorine-induced corrosion, the authors developed an automated inspection system that scans an entire wafer, recording and quantifying image contrast and brightness variations associated with discolorations. Dark field TEM images reveal thickness variations of up to 5 nm in the corrosion film, and EELS line scan data show the corresponding compositional distributions. The findings indicate that fluorine-containing gases used in upstream processes leave residues behind that are driven in to the Al bondpads by probe-tip forces and activated by the electric field generated during CP testing. The knowledge acquired has proven helpful in managing the problem.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


1906 ◽  
Vol 16 (7) ◽  
pp. 552
Author(s):  
RICHARD H. JOHNSTON
Keyword(s):  

2021 ◽  
Vol 12 (02) ◽  
pp. 368-375
Author(s):  
Mini Jayan ◽  
Dhaval Shukla ◽  
Bhagavatula Indira Devi ◽  
Dhananjaya I. Bhat ◽  
Subhas K. Konar

Abstract Objectives We aimed to develop a prognostic model for the prediction of in-hospital mortality in patients with traumatic brain injury (TBI) admitted to the neurosurgery intensive care unit (ICU) of our institute. Materials and Methods The clinical and computed tomography scan data of consecutive patients admitted after a diagnosis TBI in ICU were reviewed. Construction of the model was done by using all the variables of Corticosteroid Randomization after Significant Head Injury and International Mission on Prognosis and Analysis of Clinical Trials in TBI models. The endpoint was in-hospital mortality. Results A total of 243 patients with TBI were admitted to ICU during the study period. The in-hospital mortality was 15.3%. On multivariate analysis, the Glasgow coma scale (GCS) at admission, hypoxia, hypotension, and obliteration of the third ventricle/basal cisterns were significantly associated with mortality. Patients with hypoxia had eight times, with hypotensions 22 times, and with obliteration of the third ventricle/basal cisterns three times more chance of death. The TBI score was developed as a sum of individual points assigned as follows: GCS score 3 to 4 (+2 points), 5 to 12 (+1), hypoxia (+1), hypotension (+1), and obliteration third ventricle/basal cistern (+1). The mortality was 0% for a score of “0” and 85% for a score of “4.” Conclusion The outcome of patients treated in ICU was based on common admission variables. A simple clinical grading score allows risk stratification of patients with TBI admitted in ICU.


1970 ◽  
Vol 21 (2) ◽  
pp. 93-102 ◽  
Author(s):  
G.R. Dyer ◽  
W.J. McClain ◽  
M.M. Satterfield
Keyword(s):  

Author(s):  
Suyong Yeon ◽  
ChangHyun Jun ◽  
Hyunga Choi ◽  
Jaehyeon Kang ◽  
Youngmok Yun ◽  
...  

Purpose – The authors aim to propose a novel plane extraction algorithm for geometric 3D indoor mapping with range scan data. Design/methodology/approach – The proposed method utilizes a divide-and-conquer step to efficiently handle huge amounts of point clouds not in a whole group, but in forms of separate sub-groups with similar plane parameters. This method adopts robust principal component analysis to enhance estimation accuracy. Findings – Experimental results verify that the method not only shows enhanced performance in the plane extraction, but also broadens the domain of interest of the plane registration to an information-poor environment (such as simple indoor corridors), while the previous method only adequately works in an information-rich environment (such as a space with many features). Originality/value – The proposed algorithm has three advantages over the current state-of-the-art method in that it is fast, utilizes more inlier sensor data that does not become contaminated by severe sensor noise and extracts more accurate plane parameters.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 331-339 ◽  
Author(s):  
Hong Lan ◽  
Christina M Kendziorski ◽  
Jill D Haag ◽  
Laurie A Shepel ◽  
Michael A Newton ◽  
...  

Abstract In this study, the Wistar-Kyoto (WKy) rat was genetically characterized for loci that modify susceptibility to mammary carcinogenesis. We used a genetic backcross between resistant WKy and susceptible Wistar-Furth (WF) rats as a panel for linkage mapping to genetically identify mammary carcinoma susceptibility (Mcs) loci underlying the resistance of the WKy rat. Rats were phenotyped for DMBA-induced mammary carcinomas and genotyped using microsatellite markers. To detect quantitative trait loci (QTL), we analyzed the genome scan data under both parametric and nonparametric distributional assumptions and used permutation tests to calculate significance thresholds. A generalized linear model analysis was also performed to test for interactions between significant QTL. This methodology was extended to identify interactions between the significant QTL and other genome locations. Chromosomes 5, 7, 10, and 14 were found to contain significant QTL, termed Mcs5, Mcs6, Mcs7, and Mcs8, respectively. The WKy alleles of Mcs5, -6, and -8 are associated with mammary carcinoma resistance; the WKy allele of Mcs7 is associated with an increased incidence of mammary cancer. In addition, we identified an interaction between Mcs8 and a region on chromosome 6 termed Mcsm1 (modifier of Mcs), which had no significant main effect on mammary cancer susceptibility in this genetic analysis.


Sign in / Sign up

Export Citation Format

Share Document