Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range

2003 ◽  
Vol 284 (1-4) ◽  
pp. 244-252 ◽  
Author(s):  
K. Eckhardt ◽  
U. Ulbrich
CATENA ◽  
2014 ◽  
Vol 113 ◽  
pp. 202-212 ◽  
Author(s):  
V. Butzen ◽  
M. Seeger ◽  
S. Wirtz ◽  
M. Huemann ◽  
C. Mueller ◽  
...  

2014 ◽  
Vol 33 (1) ◽  
pp. 181-192 ◽  
Author(s):  
Vasco Elbrecht ◽  
Christian K. Feld ◽  
Maria Gies ◽  
Daniel Hering ◽  
Martin Sondermann ◽  
...  

2021 ◽  
Author(s):  
Alaba Boluwade ◽  
Asma Al-Mamani ◽  
Amna Alruheili ◽  
Ali Al-Maktoumi

<p> </p><p>*Correspondence: [email protected]</p><p><strong>Abstract: </strong>The primary objective of this study was to quantify the impacts of climate change on groundwater recharge using the 3D numerical-based HydroGeoSphere (HGS) model in the Ubar/ Shisr Agricultural region in South of Oman. This region has multi-million US dollar irrigated agriculture project purposely developed for the food security of the country. Excessive abstraction of groundwater for irrigation use (using the center pivot irrigation system) has contributed to the “drying-up” of several groundwater wells located in this area. Therefore, there is an urgent need to characterize the long-term sustainability of this agricultural project under a changing climate. HGS model was calibrated on both steady and transient states using selected monitoring wells located within the study area (approximately 980-km<sup>2</sup>). The coefficient of determination (R<sup>2</sup>) for the steady-state performance was 0.93 while the transient state performances correctly reproduced the seasonality for each monitoring well. A transient-based calibrated version of the HGS model, using 30-year historical observations (1980-2018) was termed “Reference” while model configurations were developed for the immediate climatic projection (period: 2020 – 2039) based on two Representative Concentration Pathways (RCP): - RPC4.5 and RCP8.5 extracted from the World Bank Knowledge portal. These two configured models (scenarios) were evaluated for monthly transient simulations (2020-2039). From the total hydraulic head (THH) fluctuations standpoint, there were reductions when compared with “Reference” for all the scenarios with up to 20% THH reductions for groundwater well levels under persistent seasonal agricultural activities. This study is very important in quantifying the trade-offs and synergies involved between sustainable water management and food security initiatives, especially for an arid climate.</p><p>Keywords: groundwater recharge; climate change, hydrogeologic modeling; Sultanate of Oman</p>


2019 ◽  
Vol 79 (1) ◽  
pp. 37 ◽  
Author(s):  
Lukas W. Lindquist ◽  
Kyle A. Palmquist ◽  
Samuel E. Jordan ◽  
William K. Lauenroth

2017 ◽  
Vol 76 (2) ◽  
pp. 457-480 ◽  
Author(s):  
Alāna M. Wilson ◽  
Sierra Gladfelter ◽  
Mark W. Williams ◽  
Sonika Shahi ◽  
Prashant Baral ◽  
...  

Asia, a region grappling with the impacts of climate change, increasing natural disasters, and transboundary water issues, faces major challenges to water security. Water resources there are closely tied to the dramatic Hindu-Kush Himalayan (HKH) mountain range, where over 46,000 glaciers hold some of the largest repositories of fresh water on earth (Qiu 2010). Often described as the water tower of Asia, the HKH harbors the snow and ice that form the headwaters of the continent's major rivers (Bandyopadhyay 2013). Downstream, this network of river systems sustains more than 1.3 billion people who depend on these freshwater sources for their consumption and agricultural production, and increasingly as a source of hydropower (Immerzeel, Van Beek, and Bierkens 2010; National Research Council 2012; Rasul 2014).


2009 ◽  
Vol 75 ◽  
pp. 125-142 ◽  
Author(s):  
Johannes Müller ◽  
Timo Seregély ◽  
Cornelia Becker ◽  
Anne-Mette Christensen ◽  
Markus Fuchs ◽  
...  

The excavation of the Wattendorf-Motzenstein Corded Ware settlement in Franconia (Germany) has yielded new information with regard to the architecture, economy, and ritual activities, as well as the social organisation of Final Neolithic groups in Central Europe. The settlement is dated to 2660–2470 cal BC and was an agrarian community. Detailed analyses of the material culture combined with biological and pedological parameters allowed new interpretations regarding Corded Ware economies as well as domestic and ritual spheres. The settlement contained about 35 individuals at most, who were organised in fewer than eight households. The exceptional results obtained call for further research strategies to be developed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Eulogio Pardo-Igúzquiza

Global warming associated with greenhouse emissions will modify the availability of water resources in the future. Methodologies and tools to assess the impacts of climate change are useful for policy making. In this work, a new tool to generate potential future climate scenarios in a water resources system from historical and regional climate models’ information has been developed. The GROUNDS tool allows generation of the future series of precipitation, temperature (minimum, mean, and maximum), and potential evapotranspiration. It is a valuable tool for assessing the impacts of climate change in hydrological applications since these variables play a significant role in the water cycle, and it can be applicable to any case study. The tool uses different approaches and statistical correction techniques to generate individual local projections and ensembles of them. The non-equifeasible ensembles are created by combining the individual projections whose control or corrected control simulation has a better fit to the historical series in terms of basic and droughts statistics. In this work, the tool is presented, and the methodology implemented is described. It is also applied to a case study to illustrate how the tool works. The tool was previously tested in different typologies of water resources systems that cover different spatial scales (river basin, aquifer, mountain range, and country), obtaining satisfactory results. The local future scenarios can be propagated through appropriate hydrological models to study the impacts on other variables (e.g., aquifer recharge, chloride concentration in coastal aquifers, streamflow, snow cover area, and snow depth). The tool is also useful in quantifying the uncertainties of the future scenarios by combining them with stochastic weather generators.


Sign in / Sign up

Export Citation Format

Share Document