The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso

2005 ◽  
Vol 300 (1-4) ◽  
pp. 33-43 ◽  
Author(s):  
Gil Mahe ◽  
Jean-Emmanuel Paturel ◽  
Eric Servat ◽  
Declan Conway ◽  
Alain Dezetter
2010 ◽  
Vol 7 (11) ◽  
pp. 3459-3471 ◽  
Author(s):  
S. Castaldi ◽  
A. de Grandcourt ◽  
A. Rasile ◽  
U. Skiba ◽  
R. Valentini

Abstract. The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.


OENO One ◽  
2011 ◽  
Vol 45 (3) ◽  
pp. 139 ◽  
Author(s):  
Jean-Sébastien Reynard ◽  
Vivian Zufferey ◽  
Geneviève-Clara Nicol ◽  
François Murisier

<p style="text-align: justify;"><strong>Aims</strong>: The aim of the study was to assess whether, for vineyards in Vaud (Switzerland), vine water status might be a major natural factor in determining wine sensory characteristics, i.e., responsible for the so-called « terroir » effect.</p><p style="text-align: justify;"><strong>Methods and Results</strong>: The impact of vine water status on fruit and wine characteristics was examined for 23 non-irrigated locations with different soil water holding capacities during three seasons (2007-2009). In 2009, a close relationship was observed between δ<sup>13</sup>C and soil water holding capacity. Furthermore, the level of vine water status influenced both fruit and wine composition. Berry weight was strongly correlated to vine water status. The highest grape soluble solids content (SSC) at harvest was reached when water deficit was mild. Wine colour was related to vine water status: wine made from grapevines with low water status showed a significantly higher colour density. However, sensory analysis did not discriminate between wines from different water conditions.</p><p style="text-align: justify;"><strong>Conclusion</strong>: In a dry year like 2009, vine water status was related to soil water holding capacity and determined grape and wine characteristics. However, no clear relationship was observed between wine sensory characteristics and vine water status.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This study confirms the importance of soil in determining grape and wine characteristics through its effect on vine water status.</p>


Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tao Pan ◽  
Shuai Hou ◽  
Yujie Liu ◽  
Qinghua Tan

AbstractSoil water retention curve (SWRC) plays an important role in simulating soil water movement and assessing soil water holding capacity and availability. Comparison of fitness between different models to determine the best SWRC model of specific regions is required. In this study, three popular models, van Genuchten, Brooks Corey and Gardner model, were selected for comparing in a degraded alpine meadow region on the eastern Tibetan Plateau. Fitness, error distribution along with key parameters were compared. For each soil horizon, the soil moisture content at all soil water potentials decreased consistently with degradation, thereby integrally moving the SWRCs of all soil depths downward with degradation. The differences in SWRCs across various degradation degrees diminished along with soil depth and soil water potential. The Adj.r2 values of van Genuchten, Brooks Corey and Gardner models ranged in 0.971–0.995, 0.958–0.997, and 0.688–0.909, respectively. The van Genuchten and Brooks Corey models significantly (p < 0.05) outperformed the Gardner model, and have no significant differences in fitness. The fitness of all three models showed no significant changes with degradation. Regardless of degradation degree and soil depth, the fitting error of van Genuchten and Brooks Corey models was mainly distributed in the higher (from –100 hPa to –500 hPa) and lower (below –10000 hPa) potential sections. With regard to the parameters of van Genuchten and Brooks Corey models, the field capacity (θs), and permanent wilting moisture were highly coherent with Adj.r2 values of higher than 0.98, while the curve shape parameter (θr), and air entry pressure of the Brooks Corey model were much lower than those of the van Genuchten model with Adj.r2 values of lower than 0.91. The SWRCs with varying degrees of degradation are best fitted by both van Genuchten and Brooks Corey models but cannot be fitted by Gardner model. Soil water holding capacity decreased with degradation especially in the top soil (0 cm to 30 cm), but the curve shape of all SWRCs did not change significantly with degradation.


2008 ◽  
Vol 12 (3) ◽  
pp. 899-911 ◽  
Author(s):  
I. Portoghese ◽  
V. Iacobellis ◽  
M. Sivapalan

Abstract. This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. The existence of preferential associations between soil water holding capacity and vegetation species is assessed through an extensive soil geo-database focused on a study region in Southern Italy. Water balance constraints that dominate the organization of landscapes are investigated by a conceptual bucket approach. The temporal water balance dynamics are modelled, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of explaining the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found consistent with the observed affinity patterns.


2012 ◽  
Vol 32 (2) ◽  
pp. 538-547 ◽  
Author(s):  
潘春翔 PAN Chunxiang ◽  
李裕元 LI Yuyuan ◽  
彭亿 PENG Yi ◽  
高茹 GAO Ru ◽  
吴金水 WU Jinshui

Geoderma ◽  
2011 ◽  
Vol 160 (3-4) ◽  
pp. 355-366 ◽  
Author(s):  
Christian Piedallu ◽  
Jean-Claude Gégout ◽  
Ary Bruand ◽  
Ingrid Seynave

2017 ◽  
pp. 143-148
Author(s):  
Mahama Salifu

Maize (Zea mays L.) is the most important consuming cereal crop in the world after rice and wheat. This requires an understanding of various management practices as well as conditions that affect maize crop performance. Water deficit stress during crop production is one of the most serious threats to crop production in most parts of the world and drought stress or water deficit is an inevitable and recurring feature of global agriculture and it is against this background that field study of crops response to water deficit is very important to crop producer and researchers to maximize yield and improve crop production in this era of unpredicted climatic changes the world over.A pot experiment was carried out to determine the effects of water deficit on growth and yield formation of maize. Two maize cultivars were used Xundan20 and Zhongdan5485. Three levels of soil water content were used in two stages of water control levels at two stages of the maize plant development1. The JOINTING STAGE: A. CONTROL (CK) soil water content: from 70% to 80% of soil water holding capacity at the field, soil water content: from 55% to 65% of soil water holding capacity at the field, soil water content: from 40% to 50% of the Soil water holding capacity at the field.2. The BIG FLARE PERIOD: A. CONTROL (CK) soil water content: from 75% to 85% of soil water holding capacity at the field, soil water content: from 58% to 68% of soil water holding capacity at the field, soil water content: from 45% to 55% of the soil water holding capacity at the field.This research mainly studied the effects of water deficit on physiological, morphology and the agronomical characteristics of the maize plant at the different water stress levels.The importance of these results in this experiment will enable plant producers to focus and have a fair idea as to which stage of the maize plant’s development that much attention must be given to in terms of water supply.


Sign in / Sign up

Export Citation Format

Share Document