Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy)

2011 ◽  
Vol 396 (3-4) ◽  
pp. 292-301 ◽  
Author(s):  
Bruno Capaccioni ◽  
Orlando Vaselli ◽  
Franco Tassi ◽  
Alba P. Santo ◽  
A. Delgado Huertas
Geophysics ◽  
1973 ◽  
Vol 38 (6) ◽  
pp. 1130-1144 ◽  
Author(s):  
A. A. R. Zohdy ◽  
L. A. Anderson ◽  
L. J. P. Muffler

The Mud Volcano area in Yellowstone National Park provides an example of a vapor‐dominated geothermal system. A test well drilled to a depth of about 347 ft penetrated the vapor‐dominated reservoir at a depth of less than 300 ft. Subsequently, 16 vertical electrical soundings (VES) of the Schlumberger type were made along a 3.7‐mile traverse to evaluate the electrical resistivity distribution within this geothermal field. Interpretation of the VES curves by computer modeling indicates that the vapor‐dominated layer has a resistivity of about 75–130 ohm‐m and that its lateral extent is about 1 mile. It is characteristically overlain by a low‐resistivity layer of about 2–6.5 ohm‐m, and it is laterally confined by a layer of about 30 ohm‐m. This 30‐ohm‐m layer, which probably represents hot water circulating in low‐porosity rocks, also underlies most of the survey at an average depth of about 1000 ft. Horizontal resistivity profiles, measured with two electrode spacings of an AMN array, qualitatively corroborate the sounding interpretation. The profiling data delineate the southeast boundary of the geothermal field as a distinct transition from low to high apparent resistivities. The northwest boundary is less distinctly defined because of the presence of thick lake deposits of low resistivities. A broad positive self‐potential anomaly is observed over the geothermal field, and it is interpretable in terms of the circulation of the thermal waters. Induced‐polarization anomalies were obtained at the northwest boundary and near the southeast boundary of the vapor‐dominated field. These anomalies probably are caused by relatively high concentrations of pyrite.


Clay Minerals ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 281-315 ◽  
Author(s):  
Ö. I. Ece ◽  
P. A. Schroeder ◽  
M. J. Smilley ◽  
J. M. Wampler

AbstractThe Biga Peninsula of NW Turkey is host to six major halloysite deposits in the Go¨nen, Yenice and Balya districts. Mineralization took place in areas of Permian limestone blocks where the Triassic Karakaya Complex is in contact with early Miocene calc-alkaline volcanic rocks. Hypogene halloysite mineralization was controlled by the intersection of minor faults in the vicinity of clay deposits. During the Pleistocene, activity of the North Anatolian Fault (NAF) brought ascending geothermal solutions through the fault zones to the surface, which led to hydrothermal alteration and halloysite formation. N-MORB normalized element values for each halloysite deposit and the volcanic rocks suggest genetic links. Alunite and halloysite were formed in the Turplu area where upwelling hydrothermal waters contained major H2S and SO2acids. Only halloysite mineralization occurred in outflow areas of the same fossil geothermal field.Pyrite and alunite samples from the Turplu deposits have δ34S values of 0.6–1.8% and 4.8–7.9%, respectively, with values for gypsum of 3.1–3.5%. The δ34S values of pyrite suggest that local meteoric waters had partially mixed with the dominant fluid during the closure stage of fossil hydrothermal activities. The range of δD values of halloysite samples from Turplu is –58.4 to –68.6%. The δ18O values for halloysite are in the range 16.7–18.1%. All halloysite deposits in the study areas are either overlying or adjacent to limestone blocks, and these provide excellent drainage for the discharging geothermal waters. Subsurface drainage systems in the karstic environment and the SO2-bearing thermal waters indicate the importance of acidic waters and the continuous leaching of elements in forming relatively pure hydrated halloysite. A steam-heated dissolution-precipitation model is proposed for the occurrence of all halloysite and alunite deposits. Sulphur gases (H2S-SO2) of hypogene origin rose from deep in the fault zone to the surface where they encountered oxygenated groundwater at the water table. The occurrence of H2SO4in this hydrothermal system enhanced the acidity of geothermal waters provoking advanced argillic alteration. Hypogene alunite deposits also have large P2O5contents, suggesting a parent material with a magmatic origin deeper than the alkaline tuffs. Halloysite is a fast-forming metastable precursor to kaolinite.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Xiao Wang ◽  
Guoping Lu ◽  
Bill X. Hu

Two separate groups of geothermal waters have been identified in the coastal region of Guangdong, China. One is Xinzhou thermal water of regional groundwater flow system in a granite batholith and the other is thermal water derived from shallow coastal aquifers in Shenzao geothermal field, characterized by high salinity. The hydrochemical characteristics of the thermal waters were examined and characterized as Na-Cl and Ca-Na-Cl types, which are very similar to that of seawater. The hydrochemical evolution is revealed by analyzing the correlations of components versus Cl and their relative changes for different water samples, reflecting different extents of water-rock interactions and clear mixing trends with seawaters. Nevertheless, isotopic data indicate that thermal waters are all of the meteoric origins. Isotopic data also allowed determination of different recharge elevations and presentation of different mixing proportions of seawater with thermal waters. The reservoir temperatures were estimated by chemical geothermometries and validated by fluid-mineral equilibrium calculations. The most reliable estimates of reservoir temperature lie in the range of 148–162°C for Xinzhou and the range of 135–144°C for Shenzao thermal waters, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Finally, a schematic cross-sectional fault-hydrology conceptual model was proposed.


2018 ◽  
Vol 40 (3) ◽  
pp. 1162
Author(s):  
Ch. Kougoulis ◽  
A. Arvanitis ◽  
N. Kolios ◽  
S. Koutsinos ◽  
J. S. Kougoulis

The Sani-Afytos area in the Kassandra Peninsula (Chalkidiki) was the area of systematic geothermal exploration. Based on deep oil borehole data, the Paleogene, Neogene and Quaternary sediments show significant thickness reaching 3600 m and cover the metamorphosed Mesozoic, mainly carbonate, basement. The detailed water temperature investigation proved the presence of sub-thermal waters (20-28°C) at depths up to 300 m and the spatial distribution of the isothermal curves at depths of 150 and 200 m according to the main NW-SE and SE-NW tectonic structures of the area. Through the construction of geothermal exploration and production wells at depths of 422-583 m, thermal waters of 31.7-36°C were detected within the Upper Miocene sediments. The average value of the geothermal gradient was calculated to be 3-4°CI 100 m. One production well of 520 m depth provides waters of 34°C while its potential flow rate is approximately 50 m /h. The geothermal waters were classified in Na-HCOi and Na-CI types of waters with TD. S 0.89-2.03 g/l. With the aid of chemical geothermometers the deep temperature was estimated to be 80-100°C. In one exploration well, the presence of gas phase (77% v/v CH4, 21.8% v/v N2) was detected. The geothermal exploration resulted in the characterization of the area as the "geothermal field of Sani-Afytos" and in the prospective development using the geothermal fluids in the tourism and other activities.


Sign in / Sign up

Export Citation Format

Share Document