scholarly journals Value of distributed water level and soil moisture data in the evaluation of a distributed hydrological model: Application to the PUMMA model in the Mercier catchment (6.6 km2) in France

2019 ◽  
Vol 569 ◽  
pp. 753-770 ◽  
Author(s):  
Musandji Fuamba ◽  
Flora Branger ◽  
Isabelle Braud ◽  
Essoyeke Batchabani ◽  
Pedro Sanzana ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 666 ◽  
Author(s):  
Lihua Xiong ◽  
Ling Zeng

With the increased availability of remote sensing products, more hydrological variables (e.g., soil moisture and evapotranspiration) other than streamflow data are introduced into the calibration procedure of a hydrological model. However, how the incorporation of these hydrological variables influences the calibration results remains unclear. This study aims to analyze the impact of remote sensing soil moisture data in the joint calibration of a distributed hydrological model. The investigation was carried out in Qujiang and Ganjiang catchments in southern China, where the Dem-based Distributed Rainfall-runoff Model (DDRM) was calibrated under different calibration schemes where the streamflow data and the remote sensing soil moisture are assigned to different weights in the objective function. The remote sensing soil moisture data are from the SMAP L3 soil moisture product. The results show that different weights of soil moisture in the objective function can lead to very slight differences in simulation performance of soil moisture and streamflow. Besides, the joint calibration shows no apparent advantages in terms of streamflow simulation over the traditional calibration using streamflow data only. More studies including various remote sensing soil moisture products are necessary to access their effect on the joint calibration.


2019 ◽  
Vol 11 (11) ◽  
pp. 1335 ◽  
Author(s):  
Han Yang ◽  
Lihua Xiong ◽  
Qiumei Ma ◽  
Jun Xia ◽  
Jie Chen ◽  
...  

The traditional calibration objective of hydrological models is to optimize streamflow simulations. To identify the value of satellite soil moisture data in calibrating hydrological models, a new objective of optimizing soil moisture simulations has been added to bring in satellite data. However, it leads to problems: (i) how to consider the trade-off between various objectives; (ii) how to consider the uncertainty these satellite data bring in. Among existing methods, the multi-objective Bayesian calibration framework has the potential to solve both problems but is more suitable for lumped models since it can only deal with constant variances (in time and space) of model residuals. In this study, to investigate the utilization of a soil moisture product from the Soil Moisture Active Passive (SMAP) satellite in calibrating a distributed hydrological model, the DEM (Digital Elevation Model) -based Distributed Rainfall-Runoff Model (DDRM), a multi-objective Bayesian hierarchical framework is employed in two humid catchments of southwestern China. This hierarchical framework is superior to the non-hierarchical framework when applied to distributed models since it considers the spatial and temporal residual heteroscedasticity of distributed model simulations. Taking the streamflow-based single objective calibration as the benchmark, results of adding satellite soil moisture data in calibration show that (i) there is less uncertainty in streamflow simulations and better performance of soil moisture simulations either in time and space; (ii) streamflow simulations are largely affected, while soil moisture simulations are slightly affected by weights of objectives. Overall, the introduction of satellite soil moisture data in addition to observed streamflow in calibration and putting more weights on the streamflow calibration objective lead to better hydrological performance. The multi-objective Bayesian hierarchical framework implemented here successfully provides insights into the value of satellite soil moisture data in distributed model calibration.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 594 ◽  
Author(s):  
Majid Fereidoon ◽  
Manfred Koch ◽  
Luca Brocca

Hydrological models are widely used for many purposes in water sector projects, including streamflow prediction and flood risk assessment. Among the input data used in such hydrological models, the spatial-temporal variability of rainfall datasets has a significant role on the final discharge estimation. Therefore, accurate measurements of rainfall are vital. On the other hand, ground-based measurement networks, mainly in developing countries, are either nonexistent or too sparse to capture rainfall accurately. In addition to in-situ rainfall datasets, satellite-derived rainfall products are currently available globally with high spatial and temporal resolution. An innovative approach called SM2RAIN that estimates rainfall from soil moisture data has been applied successfully to various regions. In this study, first, soil moisture content derived from the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) is used as input into the SM2RAIN algorithm to estimate daily rainfall (SM2R-AMSRE) at different sites in the Karkheh river basin (KRB), southwest Iran. Second, the SWAT (Soil and Water Assessment Tool) hydrological model was applied to simulate runoff using both ground-based observed rainfall and SM2R-AMSRE rainfall as input. The results reveal that the SM2R-AMSRE rainfall data are, in most cases, in good agreement with ground-based rainfall, with correlations R ranging between 0.58 and 0.88, though there is some underestimation of the observed rainfall due to soil moisture saturation not accounted for in the SM2RAIN equation. The subsequent SWAT-simulated monthly runoff from SM2R-AMSRE rainfall data (SWAT-SM2R-AMSRE) reproduces the observations at the six gauging stations (with coefficient of determination, R² > 0.71 and NSE > 0.56), though with slightly worse performances in terms of bias (Bias) and root-mean-square error (RMSE) and, again, some systematic flow underestimation compared to the SWAT model with ground-based rainfall input. Additionally, rainfall estimates of two satellite products of the Tropical Rainfall Measuring Mission (TRMM), 3B42 and 3B42RT, are used in the calibrated SWAT- model after bias correction. The monthly runoff predictions obtained with 3B42- rainfall have 0.42 < R2 < 0.72 and−0.06 < NSE < 0.74 which are slightly better than those obtained with 3B42RT- rainfall, but not as good as the SWAT-SM2R-AMSRE. Therefore, despite the aforementioned limitations, using SM2R-AMSRE rainfall data in a hydrological model like SWAT appears to be a viable approach in basins with limited ground-based rainfall data.


2019 ◽  
Vol 47 (8) ◽  
pp. 1357-1374 ◽  
Author(s):  
Soumya S. Behera ◽  
Bhaskar Ramchandra Nikam ◽  
Mukund S. Babel ◽  
Vaibhav Garg ◽  
Shiv Prasad Aggarwal

2013 ◽  
Vol 10 (11) ◽  
pp. 13783-13816 ◽  
Author(s):  
N. Wanders ◽  
D. Karssenberg ◽  
A. de Roo ◽  
S. M. de Jong ◽  
M. F. P. Bierkens

Abstract. We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model for flood predictions with lead times up to 10 days. For this study, satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF, are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 5–10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more data is assimilated into the system and the best performance is achieved with the assimilation of both discharge and satellite observations. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.


2017 ◽  
Vol 44 ◽  
pp. 89-100 ◽  
Author(s):  
Luca Cenci ◽  
Luca Pulvirenti ◽  
Giorgio Boni ◽  
Marco Chini ◽  
Patrick Matgen ◽  
...  

Abstract. The assimilation of satellite-derived soil moisture estimates (soil moisture–data assimilation, SM–DA) into hydrological models has the potential to reduce the uncertainty of streamflow simulations. The improved capacity to monitor the closeness to saturation of small catchments, such as those characterizing the Mediterranean region, can be exploited to enhance flash flood predictions. When compared to other microwave sensors that have been exploited for SM–DA in recent years (e.g. the Advanced SCATterometer – ASCAT), characterized by low spatial/high temporal resolution, the Sentinel 1 (S1) mission provides an excellent opportunity to monitor systematically soil moisture (SM) at high spatial resolution and moderate temporal resolution. The aim of this research was thus to evaluate the impact of S1-based SM–DA for enhancing flash flood predictions of a hydrological model (Continuum) that is currently exploited for civil protection applications in Italy. The analysis was carried out in a representative Mediterranean catchment prone to flash floods, located in north-western Italy, during the time period October 2014–February 2015. It provided some important findings: (i) revealing the potential provided by S1-based SM–DA for improving discharge predictions, especially for higher flows; (ii) suggesting a more appropriate pre-processing technique to be applied to S1 data before the assimilation; and (iii) highlighting that even though high spatial resolution does provide an important contribution in a SM–DA system, the temporal resolution has the most crucial role. S1-derived SM maps are still a relatively new product and, to our knowledge, this is the first work published in an international journal dealing with their assimilation within a hydrological model to improve continuous streamflow simulations and flash flood predictions. Even though the reported results were obtained by analysing a relatively short time period, and thus should be supported by further research activities, we believe this research is timely in order to enhance our understanding of the potential contribution of the S1 data within the SM–DA framework for flash flood risk mitigation.


2018 ◽  
Vol 35 (3) ◽  
pp. 1344-1363 ◽  
Author(s):  
Jiongfeng Chen ◽  
Wan-chang Zhang

PurposeThis paper aims to construct a simplified distributed hydrological model based on the surveyed watershed soil properties database.Design/methodology/approachThe new established model requires fewer parameters to be adjusted than needed by former hydrological models. However, the achieved stream-flow simulation results are similar and comparable to the classic hydrological models, such as the Xinanjiang model and the TOPMODEL.FindingsGood results show that the discharge and the top surface soil moisture can be simultaneously simulated, and that is the exclusive character of this new model. The stream-flow simulation results from two moderate hydrological watershed models show that the daily stream-flow simulation achieved the classic hydrological results shown in the TOPMODEL and Xinanjiang model. The soil moisture validation results show that the modeled watershed scale surface soil moisture has general agreement with the obtained measurements, with a root-mean-square error (RMSE) value of 0.04 (m3/m3) for one of the one-measurement sites and an averaged RMSE of 0.08 (m3/m3) over all measurements.Originality/valueIn this paper, a new simplified distributed hydrological model was constructed.


Sign in / Sign up

Export Citation Format

Share Document