Merging radar and rain gauge data by using spatial–temporal local weighted linear regression kriging for quantitative precipitation estimation

2021 ◽  
pp. 126612
Author(s):  
Guofeng Zhang ◽  
Guanghui Tian ◽  
Daxin Cai ◽  
Rui Bai ◽  
Jinhe Tong
2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.


Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 95 ◽  
Author(s):  
Tam ◽  
Abd Rahman ◽  
Harun ◽  
Hanapi ◽  
Kaoje

The advent of satellite rainfall products can provide a solution to the scarcity of observed rainfall data. The present study aims to evaluate the performance of high spatial-temporal resolution satellite rainfall products (SRPs) and rain gauge data in hydrological modelling and flood inundation mapping. Four SRPs, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) - Early, - Late (IMERG-E, IMERG-L), Global Satellite Mapping of Precipitation-Near Real Time (GSMaP-NRT), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Cloud Classification System (PERSIANN-CCS) and rain gauge data were used as the primary input to a hydrological model, Rainfall-Runoff-Inundation (RRI) and the simulated flood level and runoff were compared with the observed data using statistical metrics. GSMaP showed the best performance in simulating hourly runoff with the lowest relative bias (RB) and the highest Nash-Sutcliffe efficiency (NSE) of 4.9% and 0.79, respectively. Meanwhile, the rain gauge data was able to produce runoff with −12.2% and 0.71 for RB and NSE, respectively. The other three SRPs showed acceptable results in daily discharge simulation (NSE value between 0.42 and 0.49, and RB value between −23.3% and −31.2%). The generated flood map also agreed with the published information. In general, the SRPs, particularly the GSMaP, showed their ability to support rapid flood forecasting required for early warning of floods.


2020 ◽  
Vol 12 (3) ◽  
pp. 363 ◽  
Author(s):  
Qingtai Qiu ◽  
Jia Liu ◽  
Jiyang Tian ◽  
Yufei Jiao ◽  
Chuanzhe Li ◽  
...  

Radar-rain gauge merging methods have been widely used to produce high-quality precipitation with fine spatial resolution by combing the advantages of the rain gauge observation and the radar quantitative precipitation estimation (QPE). Different merging methods imply a specific choice on the treatment of radar and rain gauge data. In order to improve their applicability, significant studies have focused on evaluating the performances of the merging methods. In this study, a categorization of the radar-rain gauge merging methods was proposed as: (1) Radar bias adjustment category, (2) radar-rain gauge integration category, and (3) rain gauge interpolation category for a total of six commonly used merging methods, i.e., mean field bias (MFB), regression inverse distance weighting (RIDW), collocated co-kriging (CCok), fast Bayesian regression kriging (FBRK), regression kriging (RK), and kriging with external drift (KED). Eight different storm events were chosen from semi-humid and semi-arid areas of Northern China to test the performance of the six methods. Based on the leave-one-out cross validation (LOOCV), conclusions were obtained that the integration category always performs the best, the bias adjustment category performs the worst, and the interpolation category ranks between them. The quality of the merging products can be a function of the merging method that is affected by both the quality of radar QPE and the ability of the rain gauge to capture small-scale rainfall features. In order to further evaluate the applicability of the merging products, they were then used as the input to a rainfall-runoff model, the Hybrid-Hebei model, for flood forecasting. It is revealed that a higher quality of the merging products indicates a better agreement between the observed and the simulated runoff.


2013 ◽  
Vol 17 (7) ◽  
pp. 2905-2915 ◽  
Author(s):  
M. Arias-Hidalgo ◽  
B. Bhattacharya ◽  
A. E. Mynett ◽  
A. van Griensven

Abstract. At present, new technologies are becoming available to extend the coverage of conventional meteorological datasets. An example is the TMPA-3B42R dataset (research – v6). The usefulness of this satellite rainfall product has been investigated in the hydrological modeling of the Vinces River catchment (Ecuadorian lowlands). The initial TMPA-3B42R information exhibited some features of the precipitation spatial pattern (e.g., decreasing southwards and westwards). It showed a remarkable bias compared to the ground-based rainfall values. Several time scales (annual, seasonal, monthly, etc.) were considered for bias correction. High correlations between the TMPA-3B42R and the rain gauge data were still found for the monthly resolution, and accordingly a bias correction at that level was performed. Bias correction factors were calculated, and, adopting a simple procedure, they were spatially distributed to enhance the satellite data. By means of rain gauge hyetographs, the bias-corrected monthly TMPA-3B42R data were disaggregated to daily resolution. These synthetic time series were inserted in a hydrological model to complement the available rain gauge data to assess the model performance. The results were quite comparable with those using only the rain gauge data. Although the model outcomes did not improve remarkably, the contribution of this experimental methodology was that, despite a high bias, the satellite rainfall data could still be corrected for use in rainfall-runoff modeling at catchment and daily level. In absence of rain gauge data, the approach may have the potential to provide useful data at scales larger than the present modeling resolution (e.g., monthly/basin).


Sign in / Sign up

Export Citation Format

Share Document