Accuracy of Quantitative Precipitation Estimation by X-band Multi-Parameter Radar Using Rain-Gauge Data over Hokuriku Region.

2014 ◽  
Vol 27 (2) ◽  
pp. 67-76
Author(s):  
Yoshiaki HAYASHI ◽  
Taichi TEBAKARI ◽  
Koreyoshi YAMASAKI
2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.


1995 ◽  
Vol 34 (2) ◽  
pp. 404-410 ◽  
Author(s):  
K. Aydin ◽  
V. N. Bringi ◽  
L. Liu

Abstract Multiparameter radar measurements were made during a heavy rainfall event accompanied by hail in Colorado. Rainfall rates R and accumulation Σ for this event were estimated using S-band specific differential phase KDP, reflectivity factor ZH, and X-band specific attenuation AH3. These estimates were compared with measurements from a ground-based rain gauge. Both R–KDP and R–AH3 relations were in good agreement with the rain gauge data, that is, less than 10% difference in the rainfall accumulations. The R–Z relation produced similar results only when ZH was truncated at 55 dBZ. This study demonstrates the potential of KDP for estimating rainfall rates in severe storms that may have rain-hail mixtures.


Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 95 ◽  
Author(s):  
Tam ◽  
Abd Rahman ◽  
Harun ◽  
Hanapi ◽  
Kaoje

The advent of satellite rainfall products can provide a solution to the scarcity of observed rainfall data. The present study aims to evaluate the performance of high spatial-temporal resolution satellite rainfall products (SRPs) and rain gauge data in hydrological modelling and flood inundation mapping. Four SRPs, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) - Early, - Late (IMERG-E, IMERG-L), Global Satellite Mapping of Precipitation-Near Real Time (GSMaP-NRT), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Cloud Classification System (PERSIANN-CCS) and rain gauge data were used as the primary input to a hydrological model, Rainfall-Runoff-Inundation (RRI) and the simulated flood level and runoff were compared with the observed data using statistical metrics. GSMaP showed the best performance in simulating hourly runoff with the lowest relative bias (RB) and the highest Nash-Sutcliffe efficiency (NSE) of 4.9% and 0.79, respectively. Meanwhile, the rain gauge data was able to produce runoff with −12.2% and 0.71 for RB and NSE, respectively. The other three SRPs showed acceptable results in daily discharge simulation (NSE value between 0.42 and 0.49, and RB value between −23.3% and −31.2%). The generated flood map also agreed with the published information. In general, the SRPs, particularly the GSMaP, showed their ability to support rapid flood forecasting required for early warning of floods.


2019 ◽  
Vol 11 (12) ◽  
pp. 1479 ◽  
Author(s):  
Ji ◽  
Chen ◽  
Li ◽  
Chen ◽  
Xiao ◽  
...  

Fourteen-month precipitation measurements from a second-generation PARSIVEL disdrometer deployed in Beijing, northern China, were analyzed to investigate the microphysical structure of raindrop size distribution and its implications on polarimetric radar applications. Rainfall types are classified and analyzed in the domain of median volume diameter D0 and the normalized intercept parameter Nw. The separation line between convective and stratiform rain is almost equivalent to rain rate at 8.6 mm h–1 and radar reflectivity at 36.8 dBZ. Convective rain in Beijing shows distinct seasonal variations in log10Nw–D0 domain. X-band dual-polarization variables are simulated using the T-matrix method to derive radar-based quantitative precipitation estimation (QPE) estimators, and rainfall products at hourly scale are evaluated for four radar QPE estimators using collocated but independent rain gauge observations. This study also combines the advantages of individual estimators based on the thresholds on polarimetric variables. Results show that the blended QPE estimator has better performance than others. The rainfall microphysical analysis presented in this study is expected to facilitate the development of a high-resolution X-band radar network for urban QPE applications.


2017 ◽  
Vol 18 (12) ◽  
pp. 3199-3215 ◽  
Author(s):  
Leonardo Porcacchia ◽  
P. E. Kirstetter ◽  
J. J. Gourley ◽  
V. Maggioni ◽  
B. L. Cheong ◽  
...  

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to natural hazards. It is generally difficult to obtain reliable precipitation information over complex areas because of the scarce coverage of ground observations, the limited coverage from operational radar networks, and the high elevation of the study sites. Warm-rain processes have been observed in several flash flood events in complex terrain regions. While they lead to high rainfall rates from precipitation growth due to collision–coalescence of droplets in the cloud liquid layer, their characteristics are often difficult to identify. X-band mobile dual-polarization radars located in complex terrain areas provide fundamental information at high-resolution and at low atmospheric levels. This study analyzes a dataset collected in North Carolina during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEx) field campaign over a mountainous basin where the NOAA/National Severe Storm Laboratory’s X-band polarimetric radar (NOXP) was deployed. Polarimetric variables are used to isolate collision–coalescence microphysical processes. This work lays the basis for classification algorithms able to identify coalescence-dominant precipitation by merging the information coming from polarimetric radar measurements. The sensitivity of the proposed classification scheme is tested with different rainfall-rate retrieval algorithms and compared to rain gauge observations. Results show the inadequacy of rainfall estimates when coalescence identification is not taken into account. This work highlights the necessity of a correct classification of collision–coalescence processes, which can lead to improvements in quantitative precipitation estimation. Future studies will aim at generalizing this scheme by making use of spaceborne radar data.


Author(s):  
Ju-Yu Chen ◽  
Silke Trömel ◽  
Alexander Ryzhkov ◽  
Clemens Simmer

AbstractRecent advances demonstrate the benefits of radar-derived specific attenuation at horizontal polarization (AH) for quantitative precipitation estimation (QPE) at S and X band. To date the methodology has, however, not been adapted for the widespread European C-band radars such as installed in the network of the German Meteorological Service (DWD, Deutscher Wetterdienst). Simulations based on a large dataset of drop size distributions (DSDs) measured over Germany are performed to investigate the DSD dependencies of the attenuation parameter αH for the AH estimates. The normalized raindrop concentration (Nw) and the change of differential reflectivity (ZDR) with reflectivity at horizontal polarization (ZH) are used to categorize radar observations into regimes for which scan-wise optimized αH values are derived. For heavier continental rain with ZH > 40 dBZ, the AH-based rainfall retrieval R(AH) is combined with a rainfall estimator using a substitute of specific differential phase (). We also assess the performance of retrievals based on specific attenuation at vertical polarization (AV). Finally, the regime-adapted hybrid QPE algorithms are applied to four convective cases and one stratiform case from 2017 to 2019, and compared to DWD’s operational RAdar-OnLine-ANeichung (RADOLAN) RW rainfall product, which is based on Zh only but adjusted to rain gauge measurements. For the convective cases, our hybrid retrievals outperform the traditional R(Zh) and pure R(AH/V) retrievals with fixed αH/V values when evaluated with gauge measurements and outperform RW when evaluated by disdrometer measurements. Potential improvements using ray-wise αH/V and segment-wise applications of the ZPHI method along the radials are discussed.


2019 ◽  
Vol 14 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Santosa Sandy Putra ◽  
Banata Wachid Ridwan ◽  
Kazuki Yamanoi ◽  
Makoto Shimomura ◽  
Sulistiyani ◽  
...  

An X-band radar was installed in 2014 at Merapi Museum, Yogyakarta, Indonesia, to monitor pyroclastic and rainfall events around Mt. Merapi. This research aims to perform a reliability analysis of the point extracted rainfall data from the aforementioned newly installed radar to improve the performance of the warning system in the future. The radar data was compared with the monitored rain gauge data from Balai Sabo and the IMERG satellite data from NASA and JAXA (The Integrated Multi-satellitE Retrievals for GPM), which had not been done before. All of the rainfall data was compared on an hourly interval. The comparisons were conducted based on 11 locations that correspond to the ground rainfall measurement stations. The locations of the rain gauges are spread around Mt. Merapi area. The point rainfall information was extracted from the radar data grid and the satellite data grid, which were compared with the rain gauge data. The data were then calibrated and adjusted up to the optimum state. Based on January 2017–March 2018 data, it was obtained that the optimum state has a NSF value of 0.41 and R2value of 0.56. As a result, it was determined that the radar can capture around 79% of the hourly rainfall occurrence around Mt. Merapi area during the chosen calibration period, in comparison with the rain gauge data. The radar was also able to capture nearby 40–50% of the heavy rainfall events that pose risks of lahar. In contrast, the radar data performance in detecting drizzling and light rain types were quite precise (55% of cases), although the satellite data could detect slightly better (60% of cases). These results indicate that the radar sensitivity in detecting the extreme rainfall events must receive higher priority in future developments, especially for applications to the existing Mt. Merapi lahar early warning systems.


Sign in / Sign up

Export Citation Format

Share Document