Vanadium(IV)-chlorodipicolinate alleviates hepatic lipid accumulation by inducing autophagy via the LKB1/AMPK signaling pathway in vitro and in vivo

2018 ◽  
Vol 183 ◽  
pp. 66-76 ◽  
Author(s):  
Ying Huang ◽  
Fang Liu ◽  
Fang Zhang ◽  
Pingsheng Liu ◽  
Tao Xu ◽  
...  
2021 ◽  
Author(s):  
sheng Qiu ◽  
Zerong Liang ◽  
Qinan Wu ◽  
Miao Wang ◽  
Mengliu Yang ◽  
...  

Abstract BackgroundNuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory and the underlying mechanism thus remains unclear. Herein we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a metabolic associated fatty liver disease (MAFLD) model in high fat diet (HFD) fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of MAFLD.ResultsWe observed that Nrf2 expression levels were up-regulated in patients with MAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1 activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Weakened autophagy caused reduced lipolysis in the liver. Importantly, Chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to LAMP1 promoter and regulated its transcriptional activity. We accordingly report that Nrf2-LAMP1 interaction has an indispensable role in Nrf2-regulated hepatosteatosis. ConclusionsThese data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1 activity and attenuating autophagy. To conclude, our data reveal a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver, and we believe that multi-target intervention of Nrf2 signaling is a promising new strategy for the prevention and treatment of MAFLD.


2020 ◽  
Vol 61 (7) ◽  
pp. 1052-1064 ◽  
Author(s):  
Minjuan Ma ◽  
Rui Duan ◽  
Lulu Shen ◽  
Mengting Liu ◽  
Yaya Ji ◽  
...  

Excessive lipid deposition is a hallmark of NAFLD. Although much has been learned about the enzymes and metabolites involved in NAFLD, few studies have focused on the role of long noncoding RNAs (lncRNAs) in hepatic lipid accumulation. Here, using in vitro and in vivo models of NAFLD, we found that the lncRNA Gm15622 is highly expressed in the liver of obese mice fed a HFD and in murine liver (AML-12) cells treated with free fatty acids. Investigating the molecular mechanism in the liver-enriched expression of Gm15622 and its effects on lipid accumulation in hepatocytes and on NAFLD pathogenesis, we found that Gm15622 acts as a sponge for the microRNA miR-742-3p. This sponging activity increased the expression of the transcriptional regulator SREBP-1c and promoted lipid accumulation in the liver of the HFD mice and AML-12 cells. Moreover, further results indicated that metformin suppresses Gm15622 and alleviates NAFLD-associated lipid deposition in mice. In conclusion, we have identified an lncRNA Gm15622/miR-742-3p/SREBP-1c regulatory circuit associated with NAFLD in mice, a finding that significantly advances our insight into how lipid metabolism and accumulation are altered in this metabolic disorder. Our results also suggest that Gm15622 may be a potential therapeutic target for managing NAFLD.


2018 ◽  
Vol 42 (4) ◽  
pp. 419-428 ◽  
Author(s):  
Go Woon Kim ◽  
Hee Kyung Jo ◽  
Sung Hyun Chung

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Qin Feng ◽  
Xiao-jun Gou ◽  
Sheng-xi Meng ◽  
Cheng Huang ◽  
Yu-quan Zhang ◽  
...  

Qushi Huayu Decoction (QHD), a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD) in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK)in vivoandin vitro. Nonalcoholic fatty liver (NAFL) model was duplicated with high-fat diet in rats and with free fatty acid (FFA) in L02 cells. Inin vivoexperimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC) and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1) and carbohydrate-responsive element-binding protein (ChREBP) in the liver. Inin vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathwayin vivoandin vitro.


2021 ◽  
Author(s):  
Zheng Lu ◽  
Lu Liu ◽  
Shunxin Zhao ◽  
Jiangtao Zhao ◽  
Sujun Li

Abstract Background: Apigenin, a flavone found in several plant foods with various biological properties including anti-inflammatory and other abilities, alleviated non-alcohol fatty liver disease (NAFLD) induced by a high fat diet (HFD) in mice. However, the mechanisms underlying this protection of inflammation and NAFLD has not been known clearly. Methods: Low density lipoprotein receptor-deficient (Ldlr-/-) mice were fed with HFD diet to induce NAFLD model and were treated with apigenin (50 mg/kg/day) for eight weeks. Hepatic lipid accumulation and inflammation in the livers were analyzed and quantified. In vitro experiments, HepG2 cells were stimulated by LPS plus oleic acid (OA) in the absence of presence of apigenin (50μM). Lipid accumulation and the effect of apigenin on NLRP3/NF-κB signaling pathway was investigated.Results: Apigenin administration reduce the weight, plasma lipid levels in Ldlr-/- mice when fed an HFD. Apigenin (50 mg/kg/day) treated mice displayed reduced hepatic lipid accumulation and inflammation in the livers of mice given the HFD diet. Treating the HepG2 cells with apigenin reduced lipid accumulation. And, apigenin also inhibited activation of NLRP3/NF-κB signaling pathway stimulated by OA together with LPS. Conclusions: Our results indicated that apigenin supplementation prevented NAFLD via down-regulating the NLRP3/NF-κB signaling pathway in mice, and suggested apigenin might be a potential therapeutic agent for the prevention of NAFLD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liuran Li ◽  
Qinghua Li ◽  
Wenbin Huang ◽  
Yibing Han ◽  
Huiting Tan ◽  
...  

As a newly approved oral hypoglycaemic agent, the sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin, which is derived from the natural product phlorizin can effectively reduce blood glucose. Recent clinical studies have found that dapagliflozin alleviates non-alcoholic fatty liver disease (NAFLD), but the specific mechanism remains to be explored. This study aimed to investigate the underlying mechanism of dapagliflozin in alleviating hepatocyte steatosis in vitro and in vivo. We fed the spontaneous type 2 diabetes mellitus rats with high-fat diets and cultured human normal liver LO2 cells and human hepatocellular carcinoma HepG2 cells with palmitic acid (PA) to induce hepatocellular steatosis. Dapagliflozin attenuated hepatic lipid accumulation both in vitro and in vivo. In Zucker diabetic fatty (ZDF) rats, dapagliflozin reduced hepatic lipid accumulation via promoting phosphorylation of acetyl-CoA carboxylase 1 (ACC1), and upregulating lipid β-oxidation enzyme acyl-CoA oxidase 1 (ACOX1). Furthermore, dapagliflozin increased the expression of the autophagy-related markers LC3B and Beclin1, in parallel with a drop in p62 level. Similar effects were observed in PA-stimulated LO2 cells and HepG2 cells. Dapagliflozin treatment could also significantly activated AMPK and reduced the phosphorylation of mTOR in ZDF rats and PA-stimulated LO2 cells and HepG2 cells. We demonstrated that dapagliflozin ameliorates hepatic steatosis by decreasing lipogenic enzyme, while inducing fatty acid oxidation enzyme and autophagy, which could be associated with AMPK activation. Moreover, our results indicate that dapagliflozin induces autophagy via the AMPK-mTOR pathway. These findings reveal a novel clinical application and functional mechanism of dapagliflozin in the treatment of NAFLD.


2020 ◽  
Vol 85 (11) ◽  
pp. 3998-4008
Author(s):  
Jing Cheng ◽  
Ying Liu ◽  
Yaojie Liu ◽  
Dong Liu ◽  
Yang Liu ◽  
...  

2016 ◽  
Vol 57 (4) ◽  
pp. 251-260 ◽  
Author(s):  
Qin He ◽  
Dan Mei ◽  
Sha Sha ◽  
Shanshan Fan ◽  
Lin Wang ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem and is considered as a hepatic manifestation of metabolic syndrome. Increasing evidence demonstrates that berberine (BBR), a natural plant alkaloid, is beneficial for obesity-associated NAFLD. However, the mechanisms about how BBR improves hepatic steatosis remain uncertain. Recently, some reports revealed that enhanced autophagy could decrease hepatic lipid accumulation. In this study, we first established a high-fed diet (HFD) mice model and oleate–palmitate-induced lipotoxicity hepatocytes to explore the association among BBR, autophagy and hepatic steatosis. Our data demonstrated that BBR had profound effects on improving hepatic lipid accumulation bothin vivoandin vitro, and led to high autophagy flux. The molecular alterations proceeding these changes were characterized by inhibition of the ERK/mTOR pathway. These findings suggest an important mechanism for the positive effects of BBR on hepatic steatosis, and may provide new evidence for the clinical use of BBR in NAFLD.


2020 ◽  
Vol 245 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Zhe-Zhen Liao ◽  
Xiao-Yan Qi ◽  
Ya-Di Wang ◽  
Jiao-Yang Li ◽  
Qian-Qian Gu ◽  
...  

Remodeling of energy-storing white fat into energy-consuming beige fat has led to a promising new approach to alleviate adiposity. Several studies have shown adipokines can induce white adipose tissue (WAT) beiging through autocrine or paracrine actions. Betatrophin, a novel adipokine, has been linked to energy expenditure and lipolysis but not clearly clarified. Here, we using high-fat diet-induced obesity to determine how betatrophin modulate beiging and adiposity. We found that betatrophin-knockdown mice displayed less white fat mass and decreased plasma TG and NEFA levels. Consistently, inhibition of betatrophin leads to the phenotype change of adipocytes characterized by increased mitochondria contents, beige adipocytes and mitochondria biogenesis-specific markers both in vivo and in vitro. Of note, blocking AMP-activated protein kinase (AMPK) signaling pathway is able to abolish enhanced beige-like characteristics in betatrophin-knockdown adipocytes. Collectively, downregulation of betatrophin induces beiging in white adipocytes through activation of AMPK signaling pathway. These processes suggest betatrophin as a latent therapeutic target for obesity.


Sign in / Sign up

Export Citation Format

Share Document