scholarly journals The lncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice

2020 ◽  
Vol 61 (7) ◽  
pp. 1052-1064 ◽  
Author(s):  
Minjuan Ma ◽  
Rui Duan ◽  
Lulu Shen ◽  
Mengting Liu ◽  
Yaya Ji ◽  
...  

Excessive lipid deposition is a hallmark of NAFLD. Although much has been learned about the enzymes and metabolites involved in NAFLD, few studies have focused on the role of long noncoding RNAs (lncRNAs) in hepatic lipid accumulation. Here, using in vitro and in vivo models of NAFLD, we found that the lncRNA Gm15622 is highly expressed in the liver of obese mice fed a HFD and in murine liver (AML-12) cells treated with free fatty acids. Investigating the molecular mechanism in the liver-enriched expression of Gm15622 and its effects on lipid accumulation in hepatocytes and on NAFLD pathogenesis, we found that Gm15622 acts as a sponge for the microRNA miR-742-3p. This sponging activity increased the expression of the transcriptional regulator SREBP-1c and promoted lipid accumulation in the liver of the HFD mice and AML-12 cells. Moreover, further results indicated that metformin suppresses Gm15622 and alleviates NAFLD-associated lipid deposition in mice. In conclusion, we have identified an lncRNA Gm15622/miR-742-3p/SREBP-1c regulatory circuit associated with NAFLD in mice, a finding that significantly advances our insight into how lipid metabolism and accumulation are altered in this metabolic disorder. Our results also suggest that Gm15622 may be a potential therapeutic target for managing NAFLD.

2021 ◽  
Author(s):  
sheng Qiu ◽  
Zerong Liang ◽  
Qinan Wu ◽  
Miao Wang ◽  
Mengliu Yang ◽  
...  

Abstract BackgroundNuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory and the underlying mechanism thus remains unclear. Herein we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a metabolic associated fatty liver disease (MAFLD) model in high fat diet (HFD) fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of MAFLD.ResultsWe observed that Nrf2 expression levels were up-regulated in patients with MAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1 activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Weakened autophagy caused reduced lipolysis in the liver. Importantly, Chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to LAMP1 promoter and regulated its transcriptional activity. We accordingly report that Nrf2-LAMP1 interaction has an indispensable role in Nrf2-regulated hepatosteatosis. ConclusionsThese data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1 activity and attenuating autophagy. To conclude, our data reveal a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver, and we believe that multi-target intervention of Nrf2 signaling is a promising new strategy for the prevention and treatment of MAFLD.


2021 ◽  
Author(s):  
Fotian Xie ◽  
Dongmei Wang ◽  
Kwok Fai So ◽  
Jia Xiao ◽  
Yi Lv

Abstract Background: Hepatic lipid accumulation is one of the main pathological features of alcoholic liver disease. Metformin is an AMPK activator that has been shown to have lipid lowering effects. The purpose of this study was to investigate whether metformin had a beneficial effect on lipid accumulation in the pathogenesis of ALD.Methods: AML12 cells and male C57BL/6 mice were used to establish ALD models in vitro and in vivo, respectively. The effects of metformin on hepatocyte lipid accumulation and ALD progression in mice were detected. The role of LKB1/AMPK/ACC axis in metformin against ethanol-induced lipid accumulation was evaluated by siRNA and AAV-shRNA interference.Results: Metformin reduced the ethanol-induced lipid accumulation in AML12 cells through activating AMPK/ACC and SREBP1c and inhibiting PPARα. In addition, compared with control mice, metformin treatment inhibited ethanol-induced liver adipose accumulation and the increase of ALT and AST in serum. Interference with LKB1 attenuated the effect of metformin on ethanol-induced lipid accumulation both in vitro and in vivo.Conclusion: Metformin protects against lipid formation in ALD by activating LKB1/AMPK/ACC axis. Thus, metformin has therapeutic potential for the prevention of ALD.


2018 ◽  
Vol 42 (4) ◽  
pp. 419-428 ◽  
Author(s):  
Go Woon Kim ◽  
Hee Kyung Jo ◽  
Sung Hyun Chung

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Qin Feng ◽  
Xiao-jun Gou ◽  
Sheng-xi Meng ◽  
Cheng Huang ◽  
Yu-quan Zhang ◽  
...  

Qushi Huayu Decoction (QHD), a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD) in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK)in vivoandin vitro. Nonalcoholic fatty liver (NAFL) model was duplicated with high-fat diet in rats and with free fatty acid (FFA) in L02 cells. Inin vivoexperimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC) and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1) and carbohydrate-responsive element-binding protein (ChREBP) in the liver. Inin vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathwayin vivoandin vitro.


2021 ◽  
Author(s):  
Omar El Bounkari ◽  
Chunfang Zan ◽  
Jonas Wagner ◽  
Elina Bugar ◽  
Priscila Bourilhon ◽  
...  

Atherosclerosis is the underlying cause of cardiovascular diseases (CVDs) such as myocardial infarction and ischemic stroke. It is a lipid-triggered chronic inflammatory condition of the arterial vascular wall that is driven by various inflammatory pathways including atherogenic cytokines and chemokines. D-dopachrome tautomerase (D-DT), also known as macrophage migration inhibitory factor-2 (MIF-2), belongs to the MIF protein family, which is best known for its pathogenic role in a variety of inflammatory and immune conditions including CVDs. While MIF is well known as a promoter of atherogenic processes, MIF-2 has not been studied in atherosclerosis. Here, we investigated atherosclerosis in hyperlipidemic Mif-2-/-Apoe-/- mice and studied the role of MIF-2 in various atherogenic assays in vitro. We found that global Mif-2 deficiency as well as its pharmacological blockade by 4-CPPC protected against atherosclerotic lesion formation and vascular inflammation in models of early and advanced atherogenesis. On cellular level, MIF-2 promoted monocyte migration in 2D and 3D and monocyte arrest on aortic endothelial monolayers, promoted B-cell chemotaxis in vitro and B-cell homing in vivo, and increased macrophage foam cell formation. Dose curves and direct comparison in a 3D migration set-up suggest that MIF-2 may be a more potent chemokine than MIF for monocytes and B cells. We identify CXCR4 as a novel receptor for MIF-2. The evidence relies on a CXCR4 inhibitor, CXCR4 internalization experiments, MIF-2/CXCR4 binding studies by yeast-CXCR4 transformants, and fluorescence spectroscopic titrations with a soluble CXCR4 surrogate. Of note, Mif-2-/- Apoe-/- mice exhibited decreased plasma cholesterol and triglyceride levels, lower body weights, smaller livers, and profoundly reduced hepatic lipid accumulation compared to Apoe-/- mice. Mechanistic experiments in Huh-7 hepatocytes suggest that MIF-2 regulates the expression and activation of sterol-regulatory element binding protein-1 and -2 (SREBP-1, SREBP-2) to induce lipogenic downstream genes such as FASN and LDLR, while it attenuated the activation of the SREBP inhibiting AMPK pathway. Studies using receptor Inhibitors showed that SREBP activation and hepatic lipoprotein uptake by MIF-2 is mediated by both CXCR4 and CD74. Lastly and in line with a combined role of MIF-2 in vascular inflammation and hepatic lipid accumulation, MIF-2 was found to be profoundly upregulated in unstable human carotid plaques, underscoring a critical role for MIF-2 in advanced stages of atherosclerosis. Together, these data identify MIF-2 as a novel atherogenic chemokine and CXCR4 ligand that not only promotes lesion formation and vascular inflammation but also strongly affects hepatic lipogenesis in an SREBP-mediated manner, possibly linking atherosclerosis and hepatic steatosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liuran Li ◽  
Qinghua Li ◽  
Wenbin Huang ◽  
Yibing Han ◽  
Huiting Tan ◽  
...  

As a newly approved oral hypoglycaemic agent, the sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin, which is derived from the natural product phlorizin can effectively reduce blood glucose. Recent clinical studies have found that dapagliflozin alleviates non-alcoholic fatty liver disease (NAFLD), but the specific mechanism remains to be explored. This study aimed to investigate the underlying mechanism of dapagliflozin in alleviating hepatocyte steatosis in vitro and in vivo. We fed the spontaneous type 2 diabetes mellitus rats with high-fat diets and cultured human normal liver LO2 cells and human hepatocellular carcinoma HepG2 cells with palmitic acid (PA) to induce hepatocellular steatosis. Dapagliflozin attenuated hepatic lipid accumulation both in vitro and in vivo. In Zucker diabetic fatty (ZDF) rats, dapagliflozin reduced hepatic lipid accumulation via promoting phosphorylation of acetyl-CoA carboxylase 1 (ACC1), and upregulating lipid β-oxidation enzyme acyl-CoA oxidase 1 (ACOX1). Furthermore, dapagliflozin increased the expression of the autophagy-related markers LC3B and Beclin1, in parallel with a drop in p62 level. Similar effects were observed in PA-stimulated LO2 cells and HepG2 cells. Dapagliflozin treatment could also significantly activated AMPK and reduced the phosphorylation of mTOR in ZDF rats and PA-stimulated LO2 cells and HepG2 cells. We demonstrated that dapagliflozin ameliorates hepatic steatosis by decreasing lipogenic enzyme, while inducing fatty acid oxidation enzyme and autophagy, which could be associated with AMPK activation. Moreover, our results indicate that dapagliflozin induces autophagy via the AMPK-mTOR pathway. These findings reveal a novel clinical application and functional mechanism of dapagliflozin in the treatment of NAFLD.


2016 ◽  
Vol 57 (4) ◽  
pp. 251-260 ◽  
Author(s):  
Qin He ◽  
Dan Mei ◽  
Sha Sha ◽  
Shanshan Fan ◽  
Lin Wang ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem and is considered as a hepatic manifestation of metabolic syndrome. Increasing evidence demonstrates that berberine (BBR), a natural plant alkaloid, is beneficial for obesity-associated NAFLD. However, the mechanisms about how BBR improves hepatic steatosis remain uncertain. Recently, some reports revealed that enhanced autophagy could decrease hepatic lipid accumulation. In this study, we first established a high-fed diet (HFD) mice model and oleate–palmitate-induced lipotoxicity hepatocytes to explore the association among BBR, autophagy and hepatic steatosis. Our data demonstrated that BBR had profound effects on improving hepatic lipid accumulation bothin vivoandin vitro, and led to high autophagy flux. The molecular alterations proceeding these changes were characterized by inhibition of the ERK/mTOR pathway. These findings suggest an important mechanism for the positive effects of BBR on hepatic steatosis, and may provide new evidence for the clinical use of BBR in NAFLD.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 376
Author(s):  
Chantal B. Lucini ◽  
Ralf J. Braun

In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.


Sign in / Sign up

Export Citation Format

Share Document