scholarly journals Mechanical properties and microstructural analysis of Al–Si–Mg/carbonized maize stalk waste particulate composites

2016 ◽  
Vol 28 (2) ◽  
pp. 222-229 ◽  
Author(s):  
J.E. Oghenevweta ◽  
V.S. Aigbodion ◽  
G.B. Nyior ◽  
F. Asuke
2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2865
Author(s):  
Md Jihad Miah ◽  
Md. Munir Hossain Patoary ◽  
Suvash Chandra Paul ◽  
Adewumi John Babafemi ◽  
Biranchi Panda

This paper investigates the possibility of utilizing steel slags produced in the steelmaking industry as an alternative to burnt clay brick aggregate (BA) in concrete. Within this context, physical, mechanical (i.e., compressive and splitting tensile strength), length change, and durability (porosity) tests were conducted on concrete made with nine different percentage replacements (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% by volume of BA) of BA by induction of furnace steel slag aggregate (SSA). In addition, the chemical composition of aggregate through X-ray fluorescence (XRF) analysis and microstructural analysis through scanning electron microscopy (SEM) of aggregates and concrete were performed. The experimental results show that the physical and mechanical properties of concrete made with SSA were significantly higher than that of concrete made with BA. The compressive and tensile strength increased by 73% when SSA fully replaced BA. The expansion of concrete made with SSA was a bit higher than the concrete made with BA. Furthermore, a significant lower porosity was observed for concrete made with SSA than BA, which decreased by 40% for 100% SSA concrete than 100% BA concrete. The relation between compressive and tensile strength with the porosity of concrete mixes are in agreement with the relationships presented in the literature. This study demonstrates that SSA can be used as a full replacement of BA, which is economical, conserves the natural aggregate, and is sustainable building material since burning brick produces a lot of CO2.


Wear ◽  
2013 ◽  
Vol 302 (1-2) ◽  
pp. 1453-1460 ◽  
Author(s):  
F.A.M. Alwahdi ◽  
A. Kapoor ◽  
F.J. Franklin

Author(s):  
M. Shunmugasundaram ◽  
A. Praveenkumar ◽  
L. Ponraj Sankar ◽  
S. Sivasankar

Mechanical properties of materials are enhanced by different methods to increase the usage of the materials. In this research spray pyrolysis method is employed to increase the mechanical characteristics of three different materials. The tin oxide is chosen as coated material and aluminium, brass, mild steel are selected as substrate materials. The 500nm thin film is developed over the substrate materials by spray pyrolysis. The substrate temperature are chosen as 300? C for aluminium, 400? C for brass and mildsteel. Nozzle to substrate distance is 0.4 m, substrate temperature is 300? C for aluminium and 400? C for solution concentration as 0.2 mole and solution flow rate is 1ml/min are selected for constant deposition parameters. The hardness and tensile strength result clearly shows that strength is increased by adding the coating over the surface. The material is heated above crystallization temperature and SnO2 increases the tensile and hardness strength of the materials. The triangular metrological microscope is used to examine the microstructure of non coated and coated substrate materials. The microstructural analysis is showed that the uncoated surface of the substrate material is full of rough and pores. And displays that the tin oxide coated surface of the substrates after the initial deposition disclosed a surface with a agglomeration of tin oxide in homogeneous and uniform than the uncoated substrates.


2021 ◽  
Author(s):  
Juan C Acosta ◽  
Mark E Curtis ◽  
Carl H Sondergeld ◽  
Chandra S Rai

Abstract Volcanic ash beds are thin layers commonly observed in the Eagle Ford, Niobrara and, Vaca Muerta formations. Because of their differences in composition, sedimentary structures, and diagenetic alteration, they exhibit a significant contrast in mechanical properties with respect to surrounding formation layers. This can impact hydraulic fracturing, affecting fracture propagation and fracture geometry. Quantifying the mechanical properties of ash beds becomes significant; however, it is a challenge with traditional testing methods. Common logging fails to identify the ash beds, and core plug testing is not possible because of their friability. In this study, nanoindentation was used to measure the mechanical properties (Young's modulus, creep, and anisotropy) in Eagle Ford ash beds, and to determine the contrast with the formation matrix properties. Two separate ash beds of high clay and plagioclase composition were epoxied in an aluminum tray and left for 48 hours curing time. Horizontal and vertical samples of ash beds were acquired and mounted on a metal stub, followed by polishing and broad beam ion milling. Adjacent samples were also prepared for high-resolution Scanning Electron Microscope (SEM) microstructural analysis. The Young's modulus in ash beds ranged from 12 to 24 GPa, with the horizontal direction Young's modulus being slightly greater than that of the vertical samples. The Young's modulus contrast with adjacent layers was calculated to be 1:2 with clay-rich zones and 1:4 with calcite rich zones. The creep deformation rate was three times higher for ash beds compared to other zones. Using Backus averaging, it was determined that the presence of ash beds can increase the anisotropy in the formation by 15-25%. SEM results showed a variation in microstructure between the ash beds with evidence of diagenetic conversion of rhyolitic material into clays. Key differences between the two ash beds were due to the presence of plagioclase and the occurrence of porosity within kaolinite. Overall porosity varied between the two ash beds and adjacent carbonate layers showing a significant increase in porosity. Understanding the moduli contrast between adjacent layers can improve the hydraulic fracturing design when ash beds are encountered. In addition, the presence of these beds can lead to proppant embedment and loss in fracture connectivity. These results can be used for improving geomechanical models.


Sign in / Sign up

Export Citation Format

Share Document