Thermal energy balance control model of motorized spindle system enabling high-speed dry hobbing process

2018 ◽  
Vol 35 ◽  
pp. 29-39 ◽  
Author(s):  
Benjie Li ◽  
Huajun Cao ◽  
Xiao Yang ◽  
Salman Jafar ◽  
Dan Zeng
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Weitao Jia ◽  
Feng Gao ◽  
Yan Li ◽  
Wenwu Wu ◽  
Zhongwei Li

The paper determines the impact factors of dynamics of a motorized spindle rotor system due to high speed: centrifugal force and bearing stiffness softening. A nonlinear dynamic model of the grinding motorized spindle system considering the above impact factors is constructed. Through system simulation including phase portraits and Poincaré map, the periodic behavior and chaotic behavior of the nonlinear grinding motorized spindle system are revealed. The threshold curve of chaos motion is obtained through the Melnikov method. The conclusion can provide a theoretical basis for researching deeply the dynamic behaviors of the grinding motorized spindle system.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


2018 ◽  
Vol 172 ◽  
pp. 2323-2335 ◽  
Author(s):  
Xiao Yang ◽  
Huajun Cao ◽  
Benjie Li ◽  
Salman Jafar ◽  
Libin Zhu

2011 ◽  
Vol 317-319 ◽  
pp. 595-599
Author(s):  
Yu Xin Sun ◽  
Ling Ding ◽  
Tao Shi ◽  
Xian Xing Liu

According to magnetic suspension motorized spindle system, high speed motorized spindle system based on bearingless induction motor is presented in this paper. The prototype of high speed motorized spindle system with bearingless induction motor is studied and analyzed by using finite element analysis software Ansoft/Maxwell and Riccati transfer matrix method, and compared with high speed motorized spindle system supported by Active Magnetic Bearing (AMB). The results show that high speed motorized spindle system with bearingless induction motor has distinct advantage of simple and compact structure, which is easier to realize high speed and extra-high speed operation.


2013 ◽  
Vol 712-715 ◽  
pp. 1435-1438
Author(s):  
Xiao Ming Dai ◽  
Hong Jun Wang ◽  
Qiu Shi Han

The research on the dynamics modeling in theory and experiment for the rolling bearing-motorized spindle system including bearing modeling and spindle-bearing system modeling is reviewed. The main factors influencing the motorized spindle system dynamics are analyzed combined with the pratical engineering, which include thermal characteristics, high-speed effects and electromechanical coupling. The methods for dynamics modeling including the transfer matrix method and finite element method are related. Finally, the research directions on the dynamics of rolling-bearing motorized spindle system are forecasted.


Sign in / Sign up

Export Citation Format

Share Document