Thermal field prediction for welding paths in multi-layer gas metal arc welding-based additive manufacturing: A machine learning approach

2021 ◽  
Vol 64 ◽  
pp. 960-971
Author(s):  
Zeyu Zhou ◽  
Hongyao Shen ◽  
Bing Liu ◽  
Wangzhe Du ◽  
Jiaao Jin
Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2671 ◽  
Author(s):  
Maximilian Gierth ◽  
Philipp Henckell ◽  
Yarop Ali ◽  
Jonas Scholl ◽  
Jean Pierre Bergmann

Large-scale aluminum parts are used in aerospace and automotive industries, due to excellent strength, light weight, and the good corrosion resistance of the material. Additive manufacturing processes enable both cost and time savings in the context of component manufacturing. Thereby, wire arc additive manufacturing (WAAM) is particularly suitable for the production of large volume parts due to deposition rates in the range of kilograms per hour. Challenges during the manufacturing process of aluminum alloys, such as porosity or poor mechanical properties, can be overcome by using arc technologies with adaptable energy input. In this study, WAAM of AlMg5Mn alloy was systematically investigated by using the gas metal arc welding (GMAW) process. Herein, correlations between the energy input and the resulting temperature–time-regimes show the effect on resulting microstructure, weld seam irregularities and the mechanical properties of additively manufactured aluminum parts. Therefore, multilayer walls were built layer wise using the cold metal transfer (CMT) process including conventional CMT, CMT advanced and CMT pulse advanced arc modes. These processing strategies were analyzed by means of energy input, whereby the geometrical features of the layers could be controlled as well as the porosity to area portion to below 1% in the WAAM parts. Furthermore, the investigations show the that mechanical properties like tensile strength and material hardness can be adapted throughout the energy input per unit length significantly.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2457
Author(s):  
Oleg Panchenko ◽  
Dmitry Kurushkin ◽  
Fedor Isupov ◽  
Anton Naumov ◽  
Ivan Kladov ◽  
...  

In wire arc additive manufacturing of Ti-alloy parts (Ti-WAAM) gas metal arc welding (GMAW) can be applied for complex parts printing. However, due to the specific properties of Ti, GMAW of Ti-alloys is complicated. In this work, three different types of metal transfer modes during Ti-WAAM were investigated: Cold Metal Transfer, controlled short circuiting metal transfer, and self-regulated metal transfer at a direct current with a negative electrode. Metal transfer modes were studied using captured waveform and high-speed video analysis. Using these modes, three walls were manufactured; the geometry preservation stability was estimated and compared using effective wall width calculation, the microstructure was analyzed using optical microscopy. Transfer process data showed that arc wandering depends not only on cathode spot instabilities, but also on anode processing properties. Microstructure analysis showed that each produced wall consists of phases and structures inherent for Ti-WAAM. α-basketweave in the center of and α-colony on the grain boundary of epitaxially grown β-grains were found with heat affected zone bands along the height of the walls, so that the microstructure did not depend on metal transfer dramatically. However, the geometry preservation stability was higher in the wall, produced with controlled short circuiting metal transfer.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2491 ◽  
Author(s):  
Philipp Henckell ◽  
Maximilian Gierth ◽  
Yarop Ali ◽  
Jan Reimann ◽  
Jean Pierre Bergmann

Wire arc additive manufacturing (WAAM) by gas metal arc welding (GMAW) is a suitable option for the production of large volume metal parts. The main challenge is the high and periodic heat input of the arc on the generated layers, which directly affects geometrical features of the layers such as height and width as well as metallurgical properties such as grain size, solidification or material hardness. Therefore, processing with reduced energy input is necessary. This can be implemented with short arc welding regimes and respectively energy reduced welding processes. A highly efficient strategy for further energy reduction is the adjustment of contact tube to work piece distance (CTWD) during the welding process. Based on the current controlled GMAW process an increase of CTWD leads to a reduction of the welding current due to increased resistivity in the extended electrode and constant voltage of the power source. This study shows the results of systematically adjusted CTWD during WAAM of low-alloyed steel. Thereby, an energy reduction of up to 40% could be implemented leading to an adaptation of geometrical and microstructural features of additively manufactured work pieces.


Sign in / Sign up

Export Citation Format

Share Document