Laser surface hardening of S45C medium carbon steel using ND:YAG laser with a continuous wave

2007 ◽  
Vol 187-188 ◽  
pp. 467-470 ◽  
Author(s):  
H.J. Shin ◽  
Y.T. Yoo ◽  
D.G. Ahn ◽  
K. Im
2016 ◽  
Vol 302 ◽  
pp. 100-106 ◽  
Author(s):  
Erica Liverani ◽  
Adrian H.A. Lutey ◽  
Alessandro Ascari ◽  
Alessandro Fortunato ◽  
Luca Tomesani

1996 ◽  
Vol 11 (2) ◽  
pp. 458-468 ◽  
Author(s):  
Chin-Cheng Chen ◽  
Chun-Ju Tao ◽  
Lih-Tyan Shyu

A new method was developed to determine the eutectoid temperature, Ac1, of carbon steel during laser surface hardening. In the method a three-dimensional heat flow model with temperature-dependent physical properties was set up and solved for the temperature distribution employing a finite element method (FEM). Workpieces were heat-treated to produce a melted and hardened zone by a single pass of a continuous-wave TEM00 CO2 laser beam. The depth profile of the melted zone was used as a calibrator to solve the uncertainty imposed by the unknown surface absorptivity. Obtained was an Ac1 of, on average, 770 °C, a superheat of 47 °C compared to the equilibrium Ac1 of 723 °C. Furthermore, the numerical model was also employed to predict the hardened depth, and the results show that, for a depth of more than 100 μm, the eutectoid temperature 770 °C leads to a depth about 10% smaller than that predicted at 723 °C. The use of the temperature-dependent physical properties is critical; an error up to 80% could result if constant physical properties are used.


2018 ◽  
Author(s):  
Sagar Sarkar ◽  
Ashish Kumar Nath

Laser surface hardening of most of the industrial components require depth of surface modification in the range of 100–150 micron. Conventional laser surface hardening uses laser as a heat source to modify a particular area of the surface without melting in an inert gas environment. However, the hardened profile in this case shows peak hardness value at a certain depth from the top surface. Also, hardening the top surface to get relatively much higher hardness near the top surface in case of thin sheets becomes difficult due to accumulation of heat below the surface of the specimen which in turn lowers the cooling rate. Hence, self-quenching becomes inadequate. In the present study, an in-house fabricated laser processing head with coaxial water nozzle has been used to flow a laminar water-jet during the laser surface hardening process to induce forced convection at the top surface. Thus, heat gets carried away by the water-jet from the top surface and by the water from the bottom surface as well. Results show that with judicious selection of process parameters, it is possible to get higher hardness (800 HV) to that of conventional laser surface hardening (500 HV) at the top surface using this process. Present process can be used for those cases where high hardness values are required near the top surface specially for thin sheets and thermally sensitive materials.


2004 ◽  
Vol 39 (19) ◽  
pp. 6117-6119 ◽  
Author(s):  
Young-Tae Yoo ◽  
Dong-Gyu Ahn ◽  
Kung-Bo Ro ◽  
Seong-Wook Song ◽  
Ho-Jun Shin ◽  
...  

1997 ◽  
Author(s):  
G. Duffet ◽  
P. Kirat ◽  
H. Andrzejewski ◽  
A. B. Vannes

Sign in / Sign up

Export Citation Format

Share Document