The effects of the feed rate on the cutting tool stresses in machining of Inconel 718

2008 ◽  
Vol 196 (1-3) ◽  
pp. 165-173 ◽  
Author(s):  
Erdogan Kose ◽  
Abdullah Kurt ◽  
Ulvi Seker
2006 ◽  
Vol 526 ◽  
pp. 229-234 ◽  
Author(s):  
Ulvi Şeker ◽  
Adem Kurt

In this paper, a mathematical model has been developed for the cutting tool stresses in machining of nickel-based super alloy Inconel 718 used in aircraft and spacecraft industries, nuclear power systems and steam generators etc. necessitating oxidation and corrosion resistance, high temperature and strength. The cutting forces were measured by a series of experimental measurements and stress distributions on the cutting tool were analyzed by means of the finite element method using Ansys software. The mathematical modeling process of the compressive stresses in x, y and z directions was carried out with multiple regression analysis regarding to Ansys stress results depending on the cutting forces and the chip–tool contact area. It is found that model results had good agreement with the Ansys stress results.


2019 ◽  
Vol 294 ◽  
pp. 129-134
Author(s):  
Shen Yung Lin ◽  
Bing Hsueh Yang

The five stage experiments including without assistance, single and hybrid assisted machining systems on Inconel 718 milling were conducted in this study. First of all, the milling experiment without assistance was performed to investigate the variations of cutting performance and the results were used for a suitable process parameter planning in the subsequent stage experiments. Next, a laser assisted system was introduced in the second stage where the spacing distance between the laser spot and cutting-tool along the cutting direction was modified to test whether laser preheating may effectively reduce the cutting force. A biaxial ultrasonically assisted system with only one-axis oscillation (x or y direction) and with two-axis simultaneous oscillations (x and y directions) were subsequently introduced at the third to fourth stage experiments, respectively. While a biaxial ultrasonically and the laser assisted systems were integrated together to construct a hybrid assisted cutting system at the last stage experiment. Under these assistances, milling experiments of Inconel 718 by cutting-tool of tungsten carbide with nanoSi® coating were conducted. And the full-factorial experiments of process parameter combinations such as spindle speed, radial cutting depth and feed rate were planned. The results indicated that the laser-preheating assisted system could effectively reduce the cutting force as well as enhance the cutting performance. The effect of the biaxial ultrasonic oscillation on tool service life could greatly be promoted. Furthermore, the cutting performance exhibited in the integrated hybrid assisted milling prevails over that in milling without assistance as well as with each single assisted system. Under this hybrid assisted milling, the better surface roughness of 0.216μm was obtained under a combination of spindle speed of 6000 rpm, radial cutting depth of 0.01 mm, and feed rate of 300mm/min, accompanied by a maximum cutting-tool wear of 13.849μm.


2020 ◽  
Author(s):  
Ivan Sunit Rout ◽  
P. Pal Pandian ◽  
Manish Mathew ◽  
Kevin Lobo Ivan ◽  
Shomyajit Misra

2016 ◽  
Vol 1136 ◽  
pp. 651-654
Author(s):  
Hideki Aoyama ◽  
Duo Zhang

It is frequently the case that the feed rate indicated in a numerical control (NC) program does not obtain in actual machining processes and the cutting tool does not path the points indicated in the NC. A reason underlying such problems is that control gains are not optimized, which causes issues with acceleration and deceleration in the control of machine tools. To address these problems, in this paper, we propose a method for the optimization of control gains using the MATLAB and Simulink software by considering the weight of the workpiece, the controlling distance, and the controlling speed. Simulations confirmed the effectiveness of our proposed optimization.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


Author(s):  
Nirmal S Kalsi ◽  
Rakesh Sehgal ◽  
Vishal S. Sharma

Due to the increase in complexity and expectations of more reliable solutions for a problem, the importance of multi-objective problem solutions is increasing day by day. It can play a significant role in making a decision. In the present approach, many combinations of the optimization techniques are proposed by the researchers. These hybrid evolutionary methods integrate positive characteristics of different methods and show the advantage to reach global optimization. In this chapter, Taguchi method and the GRA (Grey Relation Analysis) technique are pronounced and used to optimize a multi-objective metal cutting process to yield maximum performance of tungsten carbide-cobalt cutting tool inserts in turning. L18 orthogonal array is selected to analyze the effect of cutting speed, feed rate, and depth of cut using cryogenically treated and untreated inserts. The performance is evaluated in terms of main cutting force, power consumption, tool wear, and material removal rate using main effect plots of S/N (Signal to Noise) ratios. This chapter indicates that the grey-based Taguchi technique is not only a novel, efficient, and reliable method of optimization, but also contributes to satisfactory solution for multi-machining objectives in the turning process. It is concluded that cryogenically treated cutting tool inserts perform better. However, the feed rate affects the process performance most significantly.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Andrzej Matras

The paper studies the potential to improve the surface roughness in parts manufactured in the Selective Laser Melting (SLM) process by using additional milling. The studied process was machining of samples made of the AlSi10Mg alloy powder. The simultaneous impacts of the laser scanning speed of the SLM process and the machining parameters of the milling process (such as the feed rate and milling width) on the surface roughness were analyzed. A mathematical model was created as a basis for optimizing the parameters of the studied processes and for selecting the sets of optimum solutions. As a result of the research, surface with low roughness (Ra = 0.14 μm, Rz = 1.1 μm) was obtained after the face milling. The performed milling allowed to reduce more than 20-fold the roughness of the SLM sample surfaces. The feed rate and the cutting width increase resulted in the surface roughness deterioration. Some milled surfaces were damaged by the chip adjoining to the rake face of the cutting tool back tooth.


Sign in / Sign up

Export Citation Format

Share Document