Double-edged cutting simulation with a new combined constitutive model for AISI 1045 steel

Author(s):  
Baoyi Zhu ◽  
Liangshan Xiong ◽  
Mingxian Xu
2010 ◽  
Vol 3 (S1) ◽  
pp. 439-442 ◽  
Author(s):  
C. Courbon ◽  
T. Mabrouki ◽  
J. Rech ◽  
J.-F. Rigal ◽  
D. Mazuyer ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 782
Author(s):  
Mohanraj Murugesan ◽  
Muhammad Sajjad ◽  
Dong Won Jung

In the field of engineering, automobile and aerospace components are manufactured based on the desired applications from the metal forming process. For producing better quality of both symmetry and asymmetry mechanical parts, understanding the material deformation and analytical representation of the material ductility behavior for the working material is necessary as the forming procedures carried out mostly in the warm processing conditions. In this work, the hot tensile test flow stress-strain data were utilized to construct the constitutive equation for describing AISI-1045 steel material hot deformation behavior, and the test conditions, such as deformation temperatures and strain rates were 750–950 ° C and 0.05–1.0 s − 1 , respectively. The surface morphology and elemental identification analysis were performed using the field emission scanning electron microscopy (FESEM) coupled with the energy-dispersive X-ray spectroscopy (EDS) mapping setup. In this work, the Arrhenius-type constitutive equation, including the strain compensation, was used to formulate the flow stress prediction model for capturing the material behavior. Besides, the Zener-Hollomon parameter was altered, employing incorporating the effect of strain rate and strain on the flow stress. The empirical model approach was employed to estimate the material model constants from the constitutive equation using the actual test measurements. The population metrics such as coefficient of determination ( R 2 ), sample standard deviation of the error (SSD), standard error of the regression (SER), coefficient of residual variation (CRV), and average absolute relative error (AARE) was employed to confirm the predictability of the proposed models. The computed results are discussed in detail, using numerical and graphical verification’s. From the graphical comparison, the flow stress-strain data achieved from the proposed constitutive model are in good agreement with the actual test measurements. The constitutive model prediction accuracy is found to be improved, like the prediction error range from 3.678% to 2.984%. This evidence proves to be feasible as the newly developed model displayed a significant improvement against the experimental observations.


2013 ◽  
Vol 589-590 ◽  
pp. 52-57
Author(s):  
Xin Yi Qiu ◽  
Peng Nan Li ◽  
Shun Xing Wu ◽  
Zhi Hui Yan ◽  
Si Wen Tang

Based on the Merchant shear angle theory, two-dimensional high-speed orthogonal cutting experiments with an ‘OXCUT’ flow stress inverse procedure were used to determine the Johnson-Cook constitutive constants of the AISI 1045 steel (195HB). The constitutive constants obtained in the strain range 1.3-1.4 and large strain rate range 6106-7106/s. It is verified by experiments, and the result shows that the cutting forces are within the permissible error range. Compared the constitutive model with Hu’s, the cutting forces of this constitutive model of FEM are closer to the measurement, while the feed force has a relatively larger gap.


2021 ◽  
Vol 16 ◽  
Author(s):  
Yong Sun ◽  
Guohe Li ◽  
Zhen He ◽  
Xiangcheng Kong

Background: Failure model is the important basis for the research of material failure and fracture, and plays an important role in the finite element simulation of metal cutting. Johnson-Cook damage model is widely used to predict the failure of many materials. Its damage evolution is controlled by five parameters Objective: In order to decrease the cost of damage parameters identification and find out the damage parameters which have great influence on the simulation results. This work can provide an assistance in the optimization and selection of constitutive model parameters. Methods: Suitable Johnson-Cook damage model parameters, which can be used in the metal cutting simulation of AISI 1045 steel, are selected by comparing the simulation results and the experiments results. The cutting process of AISI 1045 steel is simulated by changing the Johnson-Cook damage parameters in the ABAQUS/Explicit. Results: The relevance of cutting force, feed force, cutting temperature, and deformation coefficient with five Johnson-Cook damage parameters are determined. Conclusion: The finite element simulation results show that the Johnson-Cook damage model parameters D2 and D3 have the biggest impact on the cutting simulation of AISI 1045 steel. Meanwhile, different Johnson-Cook damage parameters would take different changes to the simulation results


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo da Rosa Vieira ◽  
Luciano Volcanoglo Biehl ◽  
Jorge Luis Braz Medeiros ◽  
Vagner Machado Costa ◽  
Rodrigo Jorge Macedo

AbstractQuench hardening aims at the microstructural transformation of steels in order to improve hardness and mechanical strength. The aim phase is, in most cases, the martensite. It is necessary to heat the material until it obtains its austenitization and quenching by immersion in a fluid. Currently, it is common to use watery polymeric solutions in this procedure. These fluids, which are the mixture of polymers in water, vary their thermal exchange capacity depending on the concentrations applied. The increase in concentration minimizes the removal of heat from the part, reducing the formation capacity of martensite, and developing a lower hardness and strong steel. In this work, microstructural characteristics and properties of AISI 1045 steel quenched in solutions based on polyvinylpyrrolidone (PVP) in 10, 15, 20, and 25% concentration were evaluated. The microstructural characterization quantified the percentage of the phases in each concentration, demonstrating a reduction of martensite as the concentrations were high. The investigation of the samples by x-ray diffraction confirmed the absence of austenite retained in the material. Furthermore, a microhardness scale between the core and the surface was constructed, in which a reduction gradient of the indices of this property towards the core of the sample was evidenced.


2018 ◽  
Vol 207 ◽  
pp. 02002
Author(s):  
Yaoke Wang ◽  
Meng Kou ◽  
Wei Ding ◽  
Huan Ma ◽  
Liangshan Xiong

When applying the non-parallel shear zone model to predict the cutting process parameters of carbon steel workpiece, it is found that there is a big error between the prediction results and the experimental values. And also, the former approach to obtain the relevant cutting parameters of the non-parallel shear zone model by applying coordinate transformation to the parallel shear zone model has a theoretical error – it erroneously regards the determinant (|J|) of the Jacobian matrix (J) in the coordinate transformation as a constant. The shape of the shear zone obtained when |J| is not constant is drew and it is found that the two boundaries of the shear zone are two slightly curved surfaces rather than two inclined planes. Also, the error between predicted values and experimental values of cutting force and cutting thrust is slightly smaller than that of constant |J|. A corrected model where |J| is a variable is proposed. Since the specific values of inclination of the shear zone (α, β), the thickness coefficient of the shear zone (as) and the constants related to the material (f0, p) are not given in the former work, a method to obtain the above-mentioned five constants by solving multivariable constrained optimization problem based on experimental data was also proposed; based on the obtained experimental data of AISI 1045 steel workpiece cutting force, cutting thrust, chip thickness, the results of five above-mentioned model constants are obtained. It is found that, compared with prediction from uncorrected model, the cutting force and cutting thrust of AISI 1045 steel predicted by the corrected model with the obtained constants has a better agreement with the experimental values obtained by Ivester.


1999 ◽  
Vol 338 (1-2) ◽  
pp. 177-184 ◽  
Author(s):  
Y.L. Su ◽  
S.H. Yao ◽  
C.S. Wei ◽  
W.H. Kao ◽  
C.T. Wu

Sign in / Sign up

Export Citation Format

Share Document