A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation

Author(s):  
R.J.H. Cloots ◽  
J.A.W. van Dommelen ◽  
M.G.D. Geers
Keyword(s):  
2021 ◽  
Author(s):  
Taotao Wu ◽  
Marzieh Hajiaghamemar ◽  
J. Sebastian Giudice ◽  
Ahmed Alshareef ◽  
Susan S. Margulies ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 20150091 ◽  
Author(s):  
Wei Zhao ◽  
Songbai Ji

Theoretical debate still exists on the role of linear acceleration ( a lin ) on the risk of brain injury. Recent injury metrics only consider head rotational acceleration ( a rot ) but not a lin , despite that real-world on-field head impacts suggesting a lin significantly improves a concussion risk function. These controversial findings suggest a practical challenge in integrating theory and real-world experiment. Focusing on tissue-level mechanical responses estimated from finite-element (FE) models of the human head, rather than impact kinematics alone, may help address this debate. However, the substantial computational cost incurred (runtime and hardware) poses a significant barrier for their practical use. In this study, we established a real-time technique to estimate whole-brain a lin -induced pressures. Three hydrostatic atlas pressures corresponding to translational impacts (referred to as ‘brain print’) along the three major axes were pre-computed. For an arbitrary a lin profile at any instance in time, the atlas pressures were linearly scaled and then superimposed to estimate whole-brain responses. Using 12 publically available, independently measured or reconstructed real-world a lin profiles representative of a range of impact/injury scenarios, the technique was successfully validated (except for one case with an extremely short impulse of approx. 1 ms). The computational cost to estimate whole-brain pressure responses for an entire a lin profile was less than 0.1 s on a laptop versus typically hours on a high-end multicore computer. These findings suggest the potential of the simple, yet effective technique to enable future studies to focus on tissue-level brain responses, rather than solely relying on global head impact kinematics that have plagued early and contemporary brain injury research to date.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Máté Hazay ◽  
Imre Bojtár

Purpose: Among the proposed brain injury metrics, Brain Injury Criteria (BrIC) is a promising tool for performing safety assessment of vehicles in the future. In this paper, the available risk curves of BrIC were re-evaluated with the use of reliability analysis and new risk curves were constructed for different injury types based on literature data of tissue-level tolerances. Moreover, the comparison of different injury metrics and their corresponding risk curves were performed. Methods: Tissue-level uncertainties of the effect and resistance were considered by random variables. The variability of the tissue-level predictors was quantified by the finite element reconstruction of 100 frontal crash tests which were performed in Simulated Injury Monitor environment. The applied tests were scaled to given BrIC magnitudes and the injury probabilities were calculated by Monte Carlo simulations. New risk curves were fitted to the observed results using Weibull and Lognormal distribution functions. Results: The available risk curves of diffuse axonal injury (DAI) could be slightly improved, and combined AIS 4+ risk curves were obtained by considering subdural hematoma and contusion as well. The performance of several injury metrics and their risk curves were evaluated based on the observed correlations with the tissue-level predictors. Conclusions: The cumulative strain damage measure and the BrIC provide the highest correlation (R2 = 0.61) and the most reliable risk curve for the evaluation of DAI. Although the observed correlation is smaller for other injury types, the BrIC and the associated reliability analysis-based risk curves seem to provide the best available method for estimating the brain injury risk for frontal crash tests.


2019 ◽  
Vol 10 (2) ◽  
pp. 191-196
Author(s):  
Caroline Deck ◽  
Rémy Willinger

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1487
Author(s):  
Hadeel Alyenbaawi ◽  
W. Ted Allison ◽  
Sue-Ann Mok

The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer’s disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a “prion-like” manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.


Author(s):  
Taotao Wu ◽  
Fusako Sato ◽  
Jacobo Antona-Makoshi ◽  
Lee Gabler ◽  
J. Sebastian Giudice ◽  
...  

Abstract Traumatic brain injury (TBI) contributes to a significant portion of the injuries resulting from motor vehicle crashes, falls, and sports collisions. The development of advanced countermeasures to mitigate these injuries requires a complete understanding of the tolerance of the human brain to injury. In this study, we developed a new method to establish human injury tolerance levels using an integrated database of reconstructed football impacts, sub-injurious human volunteer data, and non-human primate data. The human tolerance levels were analyzed using tissue-level metrics determined using harmonized species-specific finite element brain models. Kinematics-based metrics involving complete characterization of angular motion (e.g., DAMAGE) showed better power of predicting tissue-level deformation in a variety of impact conditions and were subsequently used to characterize injury tolerance. The proposed human brain tolerances for mild and severe TBI were estimated and presented in the form of injury risk curves based on selected tissue-level and kinematics-based injury metrics. The application of the estimated injury tolerances was finally demonstrated using real-world automotive crash data.


1995 ◽  
Vol 12 (4) ◽  
pp. 695-706 ◽  
Author(s):  
KAZUNARI UENO ◽  
JOHN W. MELVIN ◽  
LINDA LI ◽  
JAMES W. LIGHTHALL

2021 ◽  
Vol 12 ◽  
Author(s):  
Jenny L. Marsh ◽  
Sarah A. Bentil

Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


2019 ◽  
Vol 3 (6) ◽  
pp. 707-711 ◽  
Author(s):  
Andrew Peterson ◽  
Adrian M. Owen

In recent years, rapid technological developments in the field of neuroimaging have provided several new methods for revealing thoughts, actions and intentions based solely on the pattern of activity that is observed in the brain. In specialized centres, these methods are now being employed routinely to assess residual cognition, detect consciousness and even communicate with some behaviorally non-responsive patients who clinically appear to be comatose or in a vegetative state. In this article, we consider some of the ethical issues raised by these developments and the profound implications they have for clinical care, diagnosis, prognosis and medical-legal decision-making after severe brain injury.


Sign in / Sign up

Export Citation Format

Share Document