Bioinspired energy absorbing material designs using additive manufacturing

Author(s):  
Aniket Ingrole ◽  
Trevor G. Aguirre ◽  
Luca Fuller ◽  
Seth W. Donahue
Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 881
Author(s):  
Adrian Dubicki ◽  
Izabela Zglobicka ◽  
Krzysztof J. Kurzydłowski

Numerous engineering applications require lightweight structures with excellent absorption capacity. The problem of obtaining such structures may be solved by nature and especially biological structures with such properties. The paper concerns an attempt to develop a new energy-absorbing material using a biomimetic approach. The lightweight structure investigated here is mimicking geometry of diatom shells, which are known to be optimized by nature in terms of the resistance to mechanical loading. The structures mimicking frustule of diatoms, retaining the similarity with the natural shell, were 3D printed and subjected to compression tests. As required, the bio-inspired structure deformed continuously with the increase in deformation force. Finite element analysis (FEA) was carried out to gain insight into the mechanism of damage of the samples mimicking diatoms shells. The experimental results showed a good agreement with the numerical results. The results are discussed in the context of further investigations which need to be conducted as well as possible applications in the energy absorbing structures.


2020 ◽  
Vol 232 ◽  
pp. 111583
Author(s):  
Jared Correia ◽  
Vijaya Chalivendra ◽  
Yong Kim

2020 ◽  
Author(s):  
Mohammed Mudassir ◽  
Mahmoud Mansour

Cellular materials such as metal foams are porous, lightweight structures that exhibit good energy absorption properties. They have been used for many years in various applications including energy absorption. Traditional cellular structures do not have consistent pore sizes and their behaviors and properties such as failure mechanisms and energy absorption are not always same even within the same batch. This is a major obstacle for their applications in critical areas where consistency is required. With the popularity of additive manufacturing, new interest has garnered around fabricating metal foams using this technology. It is necessary to study the possibility of designing cellular structures with additive manufacturing and their energy absorbing behavior before any sort of commercialization for critical applications is contemplated. The primary hypothesis of this senior project is to prove that energy absorbing cellular materials can be designed. Designing in this context is much like how a car can be designed to carry a certain number of passengers. To prove this hypothesis, the paper shows that the geometry is a key factor that affects energy absorption and that is possible to design the geometry in order to obtain certain behaviors and properties as desired. Much like designing a car, it requires technical expertise, ingenuity, experience and learning curve for designing cellular structures. It is simple to come with a design, but not so much when the design in constrained by stringent requirements for energy absorption and failure behaviors. The scope was limited to the study of metal foams such as the ones made from aluminum and titanium. The primary interest has been academic rather than finding ways to commercialize it. The study has been carried out using simulation and experimental verification has been suggested for future work. Nevertheless, the numerical or simulation results show that energy absorbing cellular structures can be designed that exhibit good energy absorption comparable to traditional metal foams but perhaps with better consistency and failure behaviors. The specific energy absorption was found to be 18 kJ/kg for aluminum metal foams and 23 kJ/kg for titanium metal foams. The average crushing force has been observed to be around 70 kN for aluminum and around 190 kN for titanium. These values are within the acceptable range for most traditional metal foams under similar conditions as simulated in this paper.


2005 ◽  
Vol 2005.80 (0) ◽  
pp. _7-27_-_7-28_
Author(s):  
Koji MIMURA ◽  
Tsumoto UMEDA ◽  
Wei LU ◽  
Shingo HATSUDA

1975 ◽  
Vol 10 (1) ◽  
pp. 107-124 ◽  
Author(s):  
Iren B. Kovács ◽  
A. Tigyi-Sebes ◽  
K. Trombitás ◽  
P. Görög

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1944
Author(s):  
Danuta Miedzińska

The presented study deals with the analysis of the stochastic geometry of grains on ceramic foam strength behavior. A microstructural finite element (FE) model of a grainy structure of such a material was developed and stochastic changes to the grain geometry (initially of a regular cubic shape) were introduced. The numerical compression test of a series of finite element models was carried out with the use of LS Dyna computer code. To consider the ceramic specific behavior, the Johnson Holmquist constitutive model was implemented with parameters for alumina. The influence of the stochastic irregularities on the ceramic foam strength was observed—the geometry changes caused an increase in the maximum stress, which could be the basis for the indication that the production of the energy absorbing material should be based on mostly irregular grains.


2005 ◽  
Vol 480-481 ◽  
pp. 513-518 ◽  
Author(s):  
J.L. Ruiz-Herrero ◽  
Miguel A. Rodríguez-Pérez ◽  
Jose A. de Saja

It has long been recognized that the mechanical behaviour of materials under conditions of rapid loading and impact differs significantly from that under static load application [1].These differences are specially important for those materials as polymeric foams used as low energy impact absorbing materials[2]. An optimum energy absorbing material needs to dissipate the kinetic energy of the impact while keeping the force on it below some limit, thus resulting in a no-dangerous deceleration of the protected object[3]. The mechanical properties at room temperature of six polyethylene foams with closed cells and different densities have been evaluated in purely compressive impact loading conditions. The energy absorption characteristics have been evaluated through different parameters as the peak of deceleration, the load transmitted, the maximum strain and the impact time. The peak of deceleration is used to obtain the cushion diagrams at five different heights, useful to design energy absorption structures.


Sign in / Sign up

Export Citation Format

Share Document