In silico screening of estrogen-like chemicals based on different nonlinear classification models

2007 ◽  
Vol 26 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Huanxiang Liu ◽  
Ester Papa ◽  
John D. Walker ◽  
Paola Gramatica
2019 ◽  
Author(s):  
Veeren Chauhan ◽  
Mohamed M Elsutohy ◽  
C Patrick McClure ◽  
Will Irving ◽  
Neil Roddis ◽  
...  

<p>Enteroviruses are a ubiquitous mammalian pathogen that can produce mild to life-threatening disease. Bearing this in mind, we have developed a rapid, accurate and economical point-of-care biosensor that can detect a nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and aptamers to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral RNA sequence (23 bases), which was identified through in silico screening. Aptamers were designed to demonstrate specific complementarity towards the target enteroviral RNA to produce aggregated gold-aptamer nanoconstructs. Conserved target enteroviral nucleic acid sequence (≥ 1x10<sup>-7</sup> M, ≥1.4×10<sup>-14</sup> g/mL), initiates gold-aptamer-nanoconstructs disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow-assays that utilise gold-aptamer-nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (< 60 s) and could be interpreted with a bespoke software and hardware electronic interface. We anticipate our methodology will translate in-silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave-the-way forward in the clinical evaluation of disease and complement existing strategies at overcoming antimicrobial resistance.</p>


Author(s):  
Bichismita Sahu ◽  
Santosh Kumar Behera ◽  
Rudradip Das ◽  
Tanay Dalvi ◽  
Arnab Chowdhury ◽  
...  

Introduction: The outburst of the novel coronavirus COVID-19, at the end of December 2019 has turned itself into a pandemic taking a heavy toll on human lives. The causal agent being SARS-CoV-2, a member of the long-known Coronaviridae family, is a positive sense single-stranded enveloped virus and quite closely related to SARS-CoV. It has become the need of the hour to understand the pathophysiology of this disease, so that drugs, vaccines, treatment regimens and plausible therapeutic agents can be produced. Methods: In this regard, recent studies uncovered the fact that the viral genome of SARS-CoV-2 encodes nonstructural proteins like RNA dependent RNA polymerase (RdRp) which is an important tool for its transcription and replication process. A large number of nucleic acid based anti-viral drugs are being repurposed for treating COVID-19 targeting RdRp. Few of them are in the advanced stage of clinical trials including Remdesivir. While performing close investigation of the large set of nucleic acid based drugs, we were surprised to find that the synthetic nucleic acid backbone is explored very little or rare. Results: We have designed scaffolds derived from peptide nucleic acid (PNA) and subjected them for in-silico screening systematically. These designed molecules have demonstrated excellent binding towards RdRp. Compound 12 was found to possess similar binding affinity as Remdesivir with comparable pharmacokinetics. However, the in-silico toxicity prediction indicates compound 12 may be a superior molecule which can be explored further due to its excellent safety-profile with LD50 (12,000mg/kg) as opposed to Remdesivir (LD50 =1000mg/kg). Conclusion: Compound 12 falls in the safe category of class 6. Synthetic feasibility, equipotent binding and very low toxicity of this peptide nucleic acid derived compounds can serve as a leading scaffold to design, synthesize and evaluate many of similar compounds for the treatment of COVID-19.


Author(s):  
Dnyaneshwar Baswar ◽  
Abha Sharma ◽  
Awanish Mishra

Background: Alzheimer’s disease (AD), an irreversible complex neurodegenerative disorder, is most common type of dementia, with progressive loss of cholinergic neurons. Based on the multi- factorial etiology of Alzheimer’s disease, novel ligands strategy appears as up-coming approach for the development of newer molecules against AD. This study is envisaged to investigate anti-Alzheimer’s potential of 10 synthesized compounds. The screening of compounds (1-10) was carried out using in silico techniques. Methods: For in silico screening of physicochemical properties of compounds molinspiration property engine v.2018.03, Swiss ADME online web-server and pkCSM ADME were used. For pharmacodynamic prediction PASS software while toxicity profile of compounds were analyzed through ProTox-II online software. Simultaneously, molecular docking analysis was performed on mouse AChE enzyme (PDB ID:2JGE, obtained from RSCB PDB) using Auto Dock Tools 1.5.6. Results: Based on in silico studies, compound 9 and 10 have been found to have better drug likeness, LD50 value, and better anti-Alzheimer’s, nootropic activities. However, these compounds had poor blood brain barrier (BBB) permeability. Compound 4 and 9 were predicted with better docking score for AChE enzyme. Conclusion: The outcome of in silico studies have suggested, out of various substitutions at different positions of pyridoxine-carbamate, compound 9 have shown promising drug likeness, with better safety and efficacy profile for anti-Alzheimer’s activity. However, BBB permeability appears as one the major limitation of all these compounds. Further studies are required to confirm its biological activities.


2018 ◽  
Vol 12 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Priya P. Panigrahi ◽  
Ramit Singla ◽  
Ankush Bansal ◽  
Moacyr Comar Junior ◽  
Vikas Jaitak ◽  
...  

Author(s):  
Martin Balouch ◽  
Martin Šrejber ◽  
Marek Šoltys ◽  
Petra Janská ◽  
František Štěpánek ◽  
...  

In silico methodology for compound suitability for liposomal formulation has been developed. Water–lipid partitioning and permeation of candidate compounds from the DrugBank were calculated, and the most appropriate targets validated experimentally.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Nadia A. Rivero-Segura ◽  
Juan C. Gomez-Verjan

The COVID-19 pandemic has already taken the lives of more than 2 million people worldwide, causing several political and socio-economic disturbances in our daily life. At the time of publication, there are non-effective pharmacological treatments, and vaccine distribution represents an important challenge for all countries. In this sense, research for novel molecules becomes essential to develop treatments against the SARS-CoV-2 virus. In this context, Mexican natural products have proven to be quite useful for drug development; therefore, in the present study, we perform an in silico screening of 100 compounds isolated from the most commonly used Mexican plants, against the SARS-CoV-2 virus. As results, we identify ten compounds that meet leadlikeness criteria (emodin anthrone, kaempferol, quercetin, aesculin, cichoriin, luteolin, matricin, riolozatrione, monocaffeoyl tartaric acid, aucubin). According to the docking analysis, only three compounds target the key proteins of SARS-CoV-2 (quercetin, riolozatrione and cichoriin), but only one appears to be safe (cichoriin). ADME (absorption, distribution, metabolism and excretion) properties and the physiologically based pharmacokinetic (PBPK) model show that cichoriin reaches higher lung levels (100 mg/Kg, IV); therefore, it may be considered in developing therapeutic tools.


2019 ◽  
Vol 32 (2) ◽  
pp. 408-414
Author(s):  
Revathy Selvaraj ◽  
J. Suresh ◽  
A. Arun

In this work, we have synthesized efficient antibacterial compounds with anticancer novel molecules based on cyanuric chloride containing chalcone moiety. For this, novel triazine-based organic molecules were synthesized by using cyanuric chloride and 2,4-dichloro-1-ene(4-hydroxyphenyl)phenone and characterized by elemental analysis, FT-IR, NMR and UV-visible spectrometry techniques. Melting point of the molecules were increased with an increase in substitution on cyanuric chloride. The minimum inhibitory concentration (MIC) value of the synthesized compounds showed an excellent result on Gram-negative bacteria with low MIC value of 1.95 μg/mL. Gram-positive bacteria showed little resistance to the synthesized drug. The synthesized compounds were tested for their use as an anticancer drug using in silico screening method. The synthesized compounds in silico molecular docking method using breast cancer protein (BRCA2) confirms that triazine derivative with all three chlorine molecules replaced by 2,4-dichloro-1-ene(4-hydroxyphenyl)phenone showed highest binding energy with the value of -9.1900 Kcal/mol which is in agreement with the observed high MIC value obtained for Gram-negative bacteria. The synthesized molecules preferentially targeted the topoisomerase II of the bacteria. Overall, an efficient antimicrobial drug is synthesized using a simple preparation method.


2006 ◽  
Vol 49 (3) ◽  
pp. 1149-1156 ◽  
Author(s):  
Lourdes Santana ◽  
Eugenio Uriarte ◽  
Humberto González-Díaz ◽  
Giuseppe Zagotto ◽  
Ramón Soto-Otero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document