scholarly journals Level of Seven Neuroblastoma-Associated mRNAs Detected by Droplet Digital PCR Is Associated with Tumor Relapse/Regrowth of High-Risk Neuroblastoma Patients

2020 ◽  
Vol 22 (2) ◽  
pp. 236-246 ◽  
Author(s):  
Khin K.M. Thwin ◽  
Toshiaki Ishida ◽  
Suguru Uemura ◽  
Nobuyuki Yamamoto ◽  
Kyaw S. Lin ◽  
...  
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2612-2612
Author(s):  
Paola Orsini ◽  
Luciana Impera ◽  
Elisa Parciante ◽  
Cosimo Cumbo ◽  
Crescenzio Francesco Minervini ◽  
...  

Abstract Introduction. Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. They are located in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu repeats methylation has been associated with tumor aggressiveness and investigated in some solid tumors, but the global Alu methylation level has not yet been investigated in hematological malignancies. Moreover, today, some of the techniques designed to measure global DNA methylation are focused on the methylation level of specific genomic compartments, including repeat elements. In this work we propose a new method for investigating Alu differential methylation, employing droplet digital PCR (ddPCR) technology, applied in patients affected by chronic lymphocytic leukemia (CLL), myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Methods. The study included a total of 46 patients: 30 CLL patients, 7 patients with MDS at intermediate/high risk, and 9 CMML patients. The study also involved acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with azacytidine (AZA) 0.75 µM or decytabine (DEC) 0.75 µM. Four healthy donors (HD) were also included as controls. For each DNA sample two aliquots of 250ng of gDNA were simultaneously digested (with 1 unit of Alu-in/sensitive isoschizomers either MspI or HpaII) and ligated (to a previously prepared synthetic adaptor) in parallel in two separate tubes. Considering that the genomic DNA amount in a human diploid cell is about 6 pg/cell, for each sample we calculated the percentage of methylated consensus Alu sequences as the ratio between the sum of positive droplets obtained from the three wells of both HpaII (MH) and MspI (MM) final dilutions, according to the following formula: [1-(sumMH/sumMM)]x100. The significance level was set at p<0.05 for all analyses. Results. Using our ddPCR assay, we observed a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, and a minor decrease with AZA (p=0.058). Moreover, comparing the global Alu methylation levels at diagnosis and after AZA treatment in MDS patients, we observed a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis. We also extended the assessment of our assay in CLL patients at diagnosis. We observed a significant decrease of the Alu methylation level in CLL patients compared to HD. CLL patients were also classified in the following three cytogenetic risk groups according to the karyotypic alterations identified by Fluorescent In Situ Hybridization (FISH): low (with isolated 13q deletion), intermediate (without 11q, 13q and 17p deletions or with trisomy 12), and high risk (with 11q or, 17p deletions, or more than two chromosomal aberrations). Alu methylation status of the low and high-risk groups was more significantly reduced compared to HD, whereas considering intermediate-risk patients the difference was less evident. Finally, for CMML patients, a significant decrease of Alu sequences methylation was observed in patients harboring the main SRSF2 gene hotspot. However, these preliminary results should be confirmed by extending the analysis to other CMML patients. Conclusions. In our work, we propose a new method to investigate Alu differential methylation based on ddPCR technology. This assay represents an alternative to conventional quantitative-PCR (qPCR), introducing ddPCR as a more sensitive and immediate technique for Alu methylation analysis. Moreover, compared to qPCR, our ddPCR Alu assay may be carried out using very small amounts of digested gDNA (about 6 pg), and does not require a reference gene for the analysis of ddPCR data. To date, this is the first application of ddPCR to study global DNA methylation by inspecting DNA repeats. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Marco Lodrini ◽  
Annika Sprüssel ◽  
Kathy Astrahantseff ◽  
Daniela Tiburtius ◽  
Robert Konschak ◽  
...  

2020 ◽  
Vol 169 ◽  
pp. 115213 ◽  
Author(s):  
Michael A. Jahne ◽  
Nichole E. Brinkman ◽  
Scott P. Keely ◽  
Brian D. Zimmerman ◽  
Emily A. Wheaton ◽  
...  

Author(s):  
Christian Schulze ◽  
Anne-Catrin Geuthner ◽  
Dietrich Mäde

AbstractFood fraud is becoming a prominent topic in the food industry. Thus, valid methods for detecting potential adulterations are necessary to identify instances of food fraud in cereal products, a significant component of human diet. In this work, primer–probe systems for real-time PCR and droplet digital PCR (ddPCR) for the detection of these cereal species: bread wheat (together with spelt), durum wheat, rye and barley for real-time PCR and ddPCR were established, optimized and validated. In addition, it was projected to validate a molecular system for differentiation of bread wheat and spelt; however, attempts for molecular differentiation between common wheat and spelt based on the gene GAG56D failed because of the genetic variability of the molecular target. Primer–probe systems were further developed and optimized on the basis of alignments of DNA sequences, as well as already developed PCR systems. The specificity of each system was demonstrated on 10 (spelt), 11 (durum wheat and rye) and 12 (bread wheat) reference samples. Specificity of the barley system was already proved in previous work. The calculated limits of detection (LOD95%) were between 2.43 and 4.07 single genome copies in real-time PCR. Based on the “three droplet rule”, the LOD95% in ddPCR was calculated to be 9.07–13.26 single genome copies. The systems were tested in mixtures of flours (rye and common wheat) and of semolina (durum and common wheat). The methods proved to be robust with regard to the tested conditions in the ddPCR. The developed primer–probe systems for ddPCR proved to be effective in quantitatively detecting the investigated cereal species rye and common wheat in mixtures by taking into account the haploid genome weight and the degree of milling of a flour. This method can correctly detect proportions of 50%, 60% and 90% wholemeal rye flour in a mixture of wholemeal common wheat flour. Quantitative results depend on the DNA content, on ploidy of cereal species and are also influenced by comminution. Hence, the proportion of less processed rye is overestimated in higher processed bread wheat and adulteration of durum wheat by common wheat by 1–5% resulted in underestimation of common wheat.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 813
Author(s):  
Michele Manganelli ◽  
Ilaria Grossi ◽  
Manuela Ferracin ◽  
Paola Guerriero ◽  
Massimo Negrini ◽  
...  

Human hepatocellular carcinoma (HCC) is the most frequent primary tumor of the liver and the third cause of cancer-related deaths. The multikinase inhibitor sorafenib is a systemic drug for unresectable HCC. The identification of molecular biomarkers for the early diagnosis of HCC and responsiveness to treatment are needed. In this work, we performed an exploratory study to investigate the longitudinal levels of cell-free long ncRNA GAS5 and microRNAs miR-126-3p and -23b-3p in a cohort of 7 patients during the period of treatment with sorafenib. We used qPCR to measure the amounts of GAS5 and miR-126-3p and droplet digital PCR (ddPCR) to measure the levels of miR-23b-3p. Patients treated with sorafenib displayed variable levels of GAS5, miR-126-3p and miR-23b-3p at different time-points of follow-up. miR-23b-3p was further measured by ddPCR in 37 healthy individuals and 25 untreated HCC patients. The amount of miR-23b-3p in the plasma of untreated HCC patients was significantly downregulated if compared to healthy individuals. The ROC curve analysis underlined its diagnostic relevance. In conclusion, our results highlight a potential clinical significance of circulating miR-23b-3p and an exploratory observation on the longitudinal plasmatic levels of GAS5, miR-126-3p and miR-23b-3p during sorafenib treatment.


2021 ◽  
pp. 112329
Author(s):  
Dumas Deconinck ◽  
Kris Hostens ◽  
Isabel Taverniers ◽  
Filip A.M. Volckaert ◽  
Johan Robbens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document