scholarly journals Preparation and characterization of sodium silicate impregnated Chinese fir wood with high strength, water resistance, flame retardant and smoke suppression

2020 ◽  
Vol 9 (1) ◽  
pp. 1043-1053 ◽  
Author(s):  
Ping Li ◽  
Yuan Zhang ◽  
Yingfeng Zuo ◽  
Jianxiong Lu ◽  
Guangming Yuan ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20391-20402
Author(s):  
Chen Cheng ◽  
Yanling Lu ◽  
Weining Ma ◽  
Shaojie Li ◽  
Jun Yan ◽  
...  

Red phosphorus was coated by a polydopamine/melamine composite shell structure, which constituted an intumescent flame retardant with superior flame retardance and smoke suppression performance for epoxy resin.


Author(s):  
Ping Li ◽  
Yuan Zhang ◽  
Yingfeng Zuo ◽  
Jianxiong Lu ◽  
Guangming Yuan ◽  
...  

To compare The effects of organic and inorganic impregnation on the properties of unmodified, phenol formaldehyde oligomer-modified (PFOMCF), and sodium silicate-modified Chinese fir wood (SSMCF) were compared using samples prepared using the respiratory impregnation method. Impregnation and reinforcement effects and water resistance of PFOMCF and SSMCF were compared and the results was showed that the weight percentage gain, density increase rate, bending strength, and compressive strength of SSMCF were clearly higher than those of PFOMCF and had a lower water absorption rate within 60 h. The impregnation and reinforcement effects and dimensional stability of SSMCF were better than those of PFOMCF. FT-IR, XRD, CONE, and TGA examinations were used to test and analyze the chemical structure, crystalline structure, flame retardancy, and heat resistance of these modified woods. The results indicated that SSMCF possessed more hydrogen bonds than PFOMCF and that Si–O–Si chemical bonding with high bond energy was formed. Meanwhile, the weakened degree of the diffraction peak of SSMCF was much less than that of PFOMCF. These results explained that the mechanical properties and water resistance of SSMCF were better than PFOMCF. Compared with PFOMCF, SSMCF had a lower heat release rate (HRR), peak-HRR, mean-HRR, total heat release, smoke production rate, and total smoke production as well as higher thermal decomposition temperature and residual rate. Inorganic sodium silicate was shown to be a better flame retardant, while SSMCF had good smoke suppression effects, thermal stability, and safety performance in the case of fire.


RSC Advances ◽  
2018 ◽  
Vol 8 (68) ◽  
pp. 39214-39221 ◽  
Author(s):  
Yilun Shi ◽  
Zhengzhou Wang ◽  
Jian-an Zhou

Melamine phenylphosphate (MPhP) was facilely synthesized and improved the flame retardancy, smoke suppression and water resistance of epoxy resin.


2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


Author(s):  
Aileen Vandenberg ◽  
Daniel Massucci ◽  
Steven Woltornist ◽  
Douglas Adamson ◽  
Kay Wille
Keyword(s):  

2018 ◽  
Vol 51 (4) ◽  
pp. 46
Author(s):  
N. Venkateswara Rao ◽  
G. Madhusudhan Reddy ◽  
S. Nagarjuna

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1048
Author(s):  
Belén Díaz ◽  
X. Ramón Nóvoa ◽  
Carmen Pérez ◽  
Sheila Silva-Fernández

This research emphasizes the importance of the acid cleaning prior to the phosphate development on high-strength steel rods. It compares the phosphate properties achieved after different acid-pickling conditions. The most common inorganic acids were considered in this study. Additionally, taking into account the environmental and safety concerns of these acids, the assessment of a less harmful organic acid is presented. This study revealed significant differences in the coating morphology and chemical composition whereas no great changes were found in terms of the coating weight or porosity. Thus, hydrochloric and sulfuric acid promote the growth of a Fe-enriched phosphate layer with a less conductive character that is not developed after the pickling with phosphoric acid. The phosphate developed after the citric acid pickling is comparable to that developed after the inorganic acids although with a porosity slightly higher. The temperature of the citric acid bath is an important parameter that affects to the phosphate appearance, composition, and porosity.


Sign in / Sign up

Export Citation Format

Share Document