scholarly journals Production of Al6061 matrix composites with ZrO2 ceramic reinforcement using a low-cost stir casting technique: Microstructure, mechanical properties, and electrochemical behavior

2020 ◽  
Vol 9 (6) ◽  
pp. 15072-15086
Author(s):  
Vida Khalili ◽  
Akbar Heidarzadeh ◽  
Sajjad Moslemi ◽  
Leila Fathyunes
2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


Author(s):  
K H W Seah ◽  
S C Sharma ◽  
M Krishna

The mechanical properties and the fracture mechanism of composites consisting of ZA-27 alloy reinforced with titanium dioxide particles were investigated with the primary objective of understanding the influence of the particulate reinforcement on the mechanical behaviour of the ZA-27 alloy. The titanium dioxide particle content in the composites ranged from 0 to 6 per cent, in steps of 2 wt %. The composites were fabricated by the stir casting technique in which the reinforcement particles were dispersed in the vortex created in the molten matrix alloy. The study revealed improvements in Young's modulus, ultimate tensile strength (UTS), compressive strength, yield strength and hardness of the composites as the titanium dioxide content was increased, but at the expense of ductility and impact strength. The fracture behaviour of the composite was also significantly influenced by the presence of titanium dioxide particles. Eventual fracture was a result of crack propagation through the matrix as well as through the reinforcing particles. Scanning electron microscopy and fractography analyses were carried out to provide suitable explanations for the observed phenomena.


2019 ◽  
Vol 969 ◽  
pp. 122-127
Author(s):  
B.N. Anjan ◽  
G.V. Preetham Kumar

Zinc aluminum based matrix composites reinforced with SiC and Al2O3 particles have significant applications in the automobile field. Stir casting method followed by squeeze process was used for fabrication. ZA27 composites reinforced with SiC and Al2O3 particles (20-50µm) in various weight percentage (wt%) ranges from 0-10 in a step of 5 each was fabricated. OM, SEM and EDS analysis of microstructures obtained for matrix alloy and reinforced composites were performed in order to know the effect of varying wt% on physical and mechanical properties of composites. Squeeze casting technique shows better features such as fine microstructure as a result of low porosity and good bonding between matrix and reinforcement. Addition of reinforcements decreased the densities of matrix alloy. SiC reinforced composites showed better results as compared with Al2O3 reinforced ones. Hardness and ultimate tensile strength value of 10 wt% reinforced composites showed improved results.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 3929-3938 ◽  
Author(s):  
Samuel O Akinwamide ◽  
Serge M Lemika ◽  
Babatunde A Obadele ◽  
Ojo J Akinribide ◽  
Bolanle T Abe ◽  
...  

This study was conducted to investigate the synthesis, characterization and mechanical properties of aluminium reinforced with ferrotitanium and silicon carbide via stir casting technique. Microstructures of as-cast samples were analysed using optical and scanning electron microscopes equipped with energy-dispersive X-ray spectroscopy. The mechanical properties in terms of hardness, tensile, tribological behaviour and fracture were assessed. Results showed that the homogeneous dispersion of reinforcement was within the metal matrix composite. Tribological study revealed a decrease in frictional coefficient of the composites with lowest frictional coefficient observed in composite with addition of silicon carbide as reinforcement. Morphology of fractured surface displayed a reduction in the size of dimples formed in reinforced aluminium composites when compared with larger dimple sizes observed in as-cast aluminium alloy.


Author(s):  
L. O. Mudashiru ◽  
I. A. Babatunde ◽  
S. O. Adetola ◽  
O. I. Kolapo

Stir casting is an economical process for the production of aluminum matrix composites. There are many parameters in this process, which affect the final microstructure and mechanical properties of the composites. In this study, micron-sized SiC and Gr particles were used as reinforcement to fabricate Al-SiC/Gr composites at holding temperature of 700 ± 5 °C for 5 min at 350 rev/min stirring speed. The evaluation of the mechanical properties of the composites show improvement compared with pure aluminum-matrix. The Scanning Electron Microscope (SEM) of the as-cast composites shows that the vortex formations within the melt eliminates the agglomeration of the particles and improve the wettability phenomenon.


Author(s):  
Dr. Ranjith V ◽  
Dr. H K Shivanand2 ◽  
Dr. Tukaram Jadhav3 ◽  
Verma R4 ◽  
Puneeth P

Copper based composites plays a vital role in the field of marine, aerospace, automobile and power sector for making of components like electrical sliding contacts, gears, bearings, bushes, brakes and clutches etc. Even though promising reinforcements are available for the composites, always researchers search for the new combination of matrix and reinforcement for tailored properties and cost effectiveness. CNT is one of the effective reinforcement used in the metal matrix composites by various researches because of its excellent properties. The present work is focused on the preparation of copper/CNTs/Micro-Titanium composite through stir casting technique performance studies of the composite are made on the mechanical properties. The composite prepared with reinforcement such as CNTs and Micro-Titanium of 0.5, 1, 1.5 % and 1, 3 & 5wt. % were studied. The Tensile strength, Compression strength, Hardness was found out via experimentation.


2014 ◽  
Vol 592-594 ◽  
pp. 939-944 ◽  
Author(s):  
S. Santhosh Kumar ◽  
Somashekhar S. Hiremath

Micro sized particles such as SiC, Al2O3and diamond particles reinforced with metal matrix composites are most commonly used in high performance applications like military, automotive and aerospace industries. Nowadays nano sized particles are replacing the micro sized particles because of their improved physical and mechanical properties. This paper reviews the stir processing method, mechanical properties, effect of particle size on properties of composites and structure of the metal matrix composites reinforced with nanoparticles. Among the variety of liquid metallurgy techniques processes available for preparing metal matrix composites, stir casting technique is generally accepted route and currently practised commercially because of its simplicity flexibility and Uniform distribution.


2011 ◽  
Vol 264-265 ◽  
pp. 620-625 ◽  
Author(s):  
Mohd Sayuti ◽  
S. Suraya ◽  
Shamsuddin Sulaiman ◽  
T.R. Vijayaram ◽  
Mohd Khairol A. Arifin ◽  
...  

High performance automotive, aerospace, electronics and other industrial and commercial applications are finding tremendous advantages in using metal matrix composites. The reinforcement is very important because it determines the mechanical properties, cost and performance of a given composite. An excellent in mechanical properties, combined with the ease of formability and low cost makes the application of metal matrix composite of aluminium-11.8% silicon reinforced SiO2 to increase steadily. This paper investigates the interrelationships between thermal properties and reinforcement content, microstructure and hardness of LM6 reinforced SiO2 composites. Specimens were fabricated by casting technique for 5, 10, 15 and 20% weight fractions of SiO2 particulate and mesh of: 65 micron. The experimental results show that the thermal diffusivity and thermal conductivity decreases as SiO2 wt.% of the composite increases and under hardness test, it was found that the hardness value had increased gradually with the increased addition of quartz particulate by weight fraction percentage.


2018 ◽  
Vol 159 ◽  
pp. 02036
Author(s):  
Sulardjaka ◽  
Sri Nugroho ◽  
Suyanto ◽  
Deni Fajar Fitriana

Mechanical characteristic of silicon carbide particle reinforced aluminum matrix composites produced by semi solid stir casting technique was investigated. Al7Si and Al7SiMg were used as metal matrix. High purity silicon carbida with average particle size mesh 400 was used as reinforcement particle. Aluminum matrix composites with variation of SiC: 5 %, 7.5 % and 10 % wt were manufactured by the semi solid stir casting technique. Stiring process was performed by 45 ° degree carbide impeller at rotation of 600 rpm and temperature of 570 °C for 15 minutes. Characteritation of composites speciment were: microscopic examination, density, hardness, tensile and impact test. Hardness and density were tested randomly at top, midlle and bottom of composites product. Based on distribution of density, distribution of hardness and SEM photomicrograph, it can be concluded that semisolid stir casting produces the uniform distribution of particles in the matrix alloy. The results also indicate that introducing SiC reinforcement in aluminum matrix increases the hardness of Al7Si composite and Al7SiMg composite. Calculated porosities increases with increasing wt % of SiC reinforcements in composite. The addition of 1 % Mg also increases the hardness of composites, reduces porosities of composite and enhances the mechanical properties of composites.


Sign in / Sign up

Export Citation Format

Share Document