Characterization and mechanical response of novel Al-(Mg–TiFe–SiC) metal matrix composites developed by stir casting technique

2019 ◽  
Vol 53 (28-30) ◽  
pp. 3929-3938 ◽  
Author(s):  
Samuel O Akinwamide ◽  
Serge M Lemika ◽  
Babatunde A Obadele ◽  
Ojo J Akinribide ◽  
Bolanle T Abe ◽  
...  

This study was conducted to investigate the synthesis, characterization and mechanical properties of aluminium reinforced with ferrotitanium and silicon carbide via stir casting technique. Microstructures of as-cast samples were analysed using optical and scanning electron microscopes equipped with energy-dispersive X-ray spectroscopy. The mechanical properties in terms of hardness, tensile, tribological behaviour and fracture were assessed. Results showed that the homogeneous dispersion of reinforcement was within the metal matrix composite. Tribological study revealed a decrease in frictional coefficient of the composites with lowest frictional coefficient observed in composite with addition of silicon carbide as reinforcement. Morphology of fractured surface displayed a reduction in the size of dimples formed in reinforced aluminium composites when compared with larger dimple sizes observed in as-cast aluminium alloy.

2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


2020 ◽  
Vol 8 (6) ◽  
pp. 1191-1195

This paper focuses the Mechanical properties and tribological behaviour of aluminium (6063) metal which are reinforced with silicon carbide and graphite. Different percentages like7 %, 10%, 12% of silicon carbide and 3%, 5%, 8% of Graphite were added for reinforcement. The manufacturing of components is made by using stir casting method. Mechanical properties like (fatigue, impact, micro structure) and wear test are carried out in this paper. The result concluded that there is an increase in the mechanical and tribological properties with increase in weight percentage of reinforcement.


Author(s):  
Dr. Ranjith V ◽  
Dr. H K Shivanand2 ◽  
Dr. Tukaram Jadhav3 ◽  
Verma R4 ◽  
Puneeth P

Copper based composites plays a vital role in the field of marine, aerospace, automobile and power sector for making of components like electrical sliding contacts, gears, bearings, bushes, brakes and clutches etc. Even though promising reinforcements are available for the composites, always researchers search for the new combination of matrix and reinforcement for tailored properties and cost effectiveness. CNT is one of the effective reinforcement used in the metal matrix composites by various researches because of its excellent properties. The present work is focused on the preparation of copper/CNTs/Micro-Titanium composite through stir casting technique performance studies of the composite are made on the mechanical properties. The composite prepared with reinforcement such as CNTs and Micro-Titanium of 0.5, 1, 1.5 % and 1, 3 & 5wt. % were studied. The Tensile strength, Compression strength, Hardness was found out via experimentation.


2014 ◽  
Vol 592-594 ◽  
pp. 939-944 ◽  
Author(s):  
S. Santhosh Kumar ◽  
Somashekhar S. Hiremath

Micro sized particles such as SiC, Al2O3and diamond particles reinforced with metal matrix composites are most commonly used in high performance applications like military, automotive and aerospace industries. Nowadays nano sized particles are replacing the micro sized particles because of their improved physical and mechanical properties. This paper reviews the stir processing method, mechanical properties, effect of particle size on properties of composites and structure of the metal matrix composites reinforced with nanoparticles. Among the variety of liquid metallurgy techniques processes available for preparing metal matrix composites, stir casting technique is generally accepted route and currently practised commercially because of its simplicity flexibility and Uniform distribution.


2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.


2017 ◽  
Vol 263 ◽  
pp. 184-188 ◽  
Author(s):  
P. Subramanya Reddy ◽  
R. Kesavan ◽  
B. Vijaya Ramnath

The investigation of mechanical properties of silicon carbide (SiC) powders reinforced with aluminum alloy composites are recorded in this paper. SiC powders of approximately 35µm size were added in an aluminum alloy matrix to manufacture the samples of ratios 1, 2, 3 and 4 by weight % using the stir casting technique. The specimens were fabricated and several tests were conducted to evaluate the mechanical properties such as tensile strength, hardness and impact strength and then the values are compared with the base alloy. It has been observed from the results that the hardness, impact energy and tensile strength increases with the increase in % of SiC particles until 2% and drops on further increase in the SiC particles.


2018 ◽  
Vol 166 ◽  
pp. 01001 ◽  
Author(s):  
P S Shreyas ◽  
S Shriramkumar ◽  
R Sruthisagar ◽  
B Vijaya Ramnath ◽  
C Elanchezhian

Metal matrix composites (MMC) are the combination of two or more dissimilar base metals which in turn gives new metal. Composites have better properties than their base material. Nowadays, composites play the major role in manufacturing industries especially in automotive industry. This paper reveals the reinforcement of Aluminium alloy (6061) with Silicon Carbide and Copper in different ratios to produce new composite using stir casting technique in normal atmospheric temperature. In this work, mechanical behavior of the composite namely tensile strength, hardness and Flexural strength were evaluated. It was observed that sample 2 shows highest tensile strength of 155 MPa with hardness 73. The result shows that the hybrid composite had better mechanical property.


2018 ◽  
Vol 144 ◽  
pp. 03001 ◽  
Author(s):  
P. N. Siddappa ◽  
B. P. Shivakumar ◽  
K. B. Yogesha ◽  
M. Mruthunjaya ◽  
M. B. Hanamantraygouda

Aluminum Metal Matrix Composites have emerged as an advanced class of structural materials have a combination of different, superior properties compared to an unreinforced matrix, which can result in a number of service benefits such as increased strength, higher elastic moduli, higher service temperature, low CTE, improved wear resistance, high toughness, etc. The excellent mechanical properties of these materials together with weight saving makes them very attractive for a variety of engineering applications in aerospace, automotive, electronic industries, etc. Hence, these materials provide as alternative substitutes for conventional engineering materials when specific mechanical properties necessary for required applications. In this work an attempt is made to study the machining parameters of Al6061/TiC MMC. The composite is developed by reinforcing TiC particles in varying proportions of 3, 6, 9 and 12 % weight fractions to the Al6061 matric alloy through stir casting technique. Cutting forces were measured by varying cutting speed and feed rate with constant depth of cut for different % weight fractions. The results showed that the cutting force increases with the increase of feed rate and decreases with the increase of cutting speed for all the weight fractions. Cutting parameters were optimized using Taguchi technique.


2015 ◽  
Vol 766-767 ◽  
pp. 301-307 ◽  
Author(s):  
S. Dhanalakshmi ◽  
M. Jaivignesh ◽  
A. Suresh Babu ◽  
K. Shanmuga Sundaram

Metal matrix composites are the resultant of combination of two or more elements or compounds, possessing enhanced characteristics than the individual constituents present in them. This paper deals with the fabrication of Al 2014-SiC composite and investigation of its Microstructure and Mechanical properties. 2014 Aluminium alloy is characterized by good hardness. It is selected as the base metal. The Silicon Carbide is characterized by good strength and low density (3.21 g/cm3). It is chosen as the reinforcement. Silicon Carbide is coated with Nickel by electroless method to increase its wettability and binding properties. The fabrication of metal matrix composites is done by stir casting in a furnace, by introducing the required quantities of reinforcement into molten Aluminium alloy. The reinforcement and alloy is mixed by means of stirring, with the help of a stirrer. The base alloy and the composites are then tested for mechanical properties such as tensile strength, flexural strength, impact strength and hardness. The fabricated samples have higher tensile strength and impact strength than the alloy. Microstructure of the samples, are analyzed using optical microscope.


2021 ◽  
Vol 106 ◽  
pp. 84-89
Author(s):  
Mulugundam Siva Surya ◽  
G. Prasanthi ◽  
I. Chidwilas

Aluminium Matrix Composites (AMCs) are known as lightweight and high-strength materials with potential applications in areas such as aerospace, automobile, defence, engineering, and other industries. AMCs have the advantage of significantly reduce the overall weight of the vehicles and aircraft while maintaining their structural strength. The scope of this work is to fabricate Silicon Carbide (SiC) particle Metal Matrix Composites (MMC) by stir casting combined with mechanical stirring and to investigate the effect of SiC particles on the hardness, tensile and impact the behaviour of SiC particle reinforced 7075 aluminium alloy composites. The reinforcement of micron-sized range particles with an aluminium matrix is expected to improve the mechanical properties in composite materials. Different weight % of SiC particles are used (0, 5, 10, and 15 wt. %) for the synthesis of composites. The manufactured composites were tested to determine their mechanical properties and the results prove that the sample with 10 percentage of silicon carbide has better mechanical properties, comparably.


Sign in / Sign up

Export Citation Format

Share Document