scholarly journals Investigation of Mechanical Properties of Al7Si/ SiC and Al7SiMg/SiC Composites Produced by Semi Solid Stir Casting Technique

2018 ◽  
Vol 159 ◽  
pp. 02036
Author(s):  
Sulardjaka ◽  
Sri Nugroho ◽  
Suyanto ◽  
Deni Fajar Fitriana

Mechanical characteristic of silicon carbide particle reinforced aluminum matrix composites produced by semi solid stir casting technique was investigated. Al7Si and Al7SiMg were used as metal matrix. High purity silicon carbida with average particle size mesh 400 was used as reinforcement particle. Aluminum matrix composites with variation of SiC: 5 %, 7.5 % and 10 % wt were manufactured by the semi solid stir casting technique. Stiring process was performed by 45 ° degree carbide impeller at rotation of 600 rpm and temperature of 570 °C for 15 minutes. Characteritation of composites speciment were: microscopic examination, density, hardness, tensile and impact test. Hardness and density were tested randomly at top, midlle and bottom of composites product. Based on distribution of density, distribution of hardness and SEM photomicrograph, it can be concluded that semisolid stir casting produces the uniform distribution of particles in the matrix alloy. The results also indicate that introducing SiC reinforcement in aluminum matrix increases the hardness of Al7Si composite and Al7SiMg composite. Calculated porosities increases with increasing wt % of SiC reinforcements in composite. The addition of 1 % Mg also increases the hardness of composites, reduces porosities of composite and enhances the mechanical properties of composites.

2017 ◽  
Vol 62 (2) ◽  
pp. 1267-1270
Author(s):  
D.-H. Kim ◽  
T.-J. Kim ◽  
S.-G. Lim

AbstractIn this study, mechanical properties and microstructures of extruded aluminum matrix composites were investigated. The composite materials were manufactured by two step methods: powder metallurgy (mixture of aluminum powder and carbon fiber using a turbular mixer, pressing of mixed aluminum powder and carbon fiber using a cold isostatic pressing) and hot extrusion of pressed aluminum powder and carbon fiber. For the mixing of Al powder and carbon fibers, aluminum powder was used as a powder with an average particle size of 30 micrometer and the addition of the carbon fibers was 50% of volume. In order to make mixing easier, it was mixed under an optimal condition of turbular mixer with a rotational speed of 60 rpm and time of 1800s. The process of the hot-extrusion was heated at 450°C for 1 hour. Then, it was hot-extruded with a condition of extrusion ratio of 19 and ram speed of 2 mm/s. The microstructural analysis of extruded aluminum matrix composites bars and semi-solid casted alloys were carried out with the optical microscope, scanning electron microscope and X-ray diffraction. Its mechanical properties were evaluated by Vickers hardness and tensile test.


Author(s):  
L. O. Mudashiru ◽  
I. A. Babatunde ◽  
S. O. Adetola ◽  
O. I. Kolapo

Stir casting is an economical process for the production of aluminum matrix composites. There are many parameters in this process, which affect the final microstructure and mechanical properties of the composites. In this study, micron-sized SiC and Gr particles were used as reinforcement to fabricate Al-SiC/Gr composites at holding temperature of 700 ± 5 °C for 5 min at 350 rev/min stirring speed. The evaluation of the mechanical properties of the composites show improvement compared with pure aluminum-matrix. The Scanning Electron Microscope (SEM) of the as-cast composites shows that the vortex formations within the melt eliminates the agglomeration of the particles and improve the wettability phenomenon.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2012 ◽  
Vol 05 ◽  
pp. 607-614 ◽  
Author(s):  
Mohammad Amin Baghchesara ◽  
Hossein Abdizadeh ◽  
Hamid Reza Baharvandi

The objective of the present investigation was to evaluate the microstructural and mechanical properties of Al /nano MgO composite prepared via powder metallurgy method. Pure atomized aluminum powder with an average particle size of 1μm and MgO particulate with an average particle size between 60 to 80 nm were used. Composites containing 1.5, 2.5 and 5 percent of volume fraction of MgO were prepared by powder metallurgy method. The specimens were pressed by Cold Isostatic Press machine (CIP), subsequently were sintered at 575, 600 and 625°C. After sintering and preparing the samples, mechanical properties were measured. The results of microstructure, compression and hardness tests indicated that addition of MgO particulates to aluminum matrix composites improves the mechanical properties.


2019 ◽  
Vol 23 (1) ◽  
pp. 198-201 ◽  
Author(s):  
S. Sakthivelu ◽  
M. Meignanamoorthy ◽  
M. Ravichandran ◽  
P. P. Sethusundaram

AbstractThis research made an attempt to synthesize aluminum metal matrix composites through stir casting technique. The matrix material chosen in this study was AA7050 and the reinforcement material was ZrSiO4. The composites AA7050, AA7050-10%ZrSiO4, and AA7050-15%ZrSiO4were used. The wear behavior of the aluminum matrix composites was investigated by using pin-on-disc tribometer. The advanced material has substantial development in tribological behavior when the reinforcement percentage is increased. From the experimental results, it was confirmed that sliding distance of 1200 m, applied load of 3 N and sliding speed of 2 m/s result in minimum wear loss and coefficient of friction, while adding 10%ZrSiO4to the AA7050.


2020 ◽  
Author(s):  
Krishna Mohan Singh ◽  
A. K. Chauhan

Due to the demand for lightweight materials in the field of automobiles, aeronautics and some other application, there is a need to develop lightweight materials. For the last few decades, aluminum matrix composites are being developed in order to meet out the demand of the above-mentioned industries. aluminum the above, lightweight material in the form of composites of B4C reinforced in Al7075 alloy is considered for the present investigation. The composite was produced using the stir casting method. In this investigation, the micro and nano B4C particles were used as reinforcements. The fabricated composites were characterized for microstructure and mechanical properties. From the microstructural examination, it was observed that 12% of B4C nanocomposites was having fine microstructure as compared to others. The hardness and strength were found to be maximum for 12 % B4C nanocomposites which impact strength was lowest for 12% micro composites.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiaqi Pan ◽  
Xiaoshan Liu ◽  
Guoqiu He ◽  
Bin Ge ◽  
Peiwen Le ◽  
...  

Purpose The purpose of this paper is to understand the effect of particle content, applied load and sliding speed on the tribological properties of A356-SiCP composites manufactured using a newly developed vacuum stir casting technique. Design/methodology/approach A356 alloy reinforced with 10, 15 and 20 vol% SiC particles was prepared by vacuum stir casting. Tribological tests were carried out on block-on-ring tribometer under dry sliding conditions, room temperature. Wear mechanism was investigated by scanning electron microscope and energy dispersion spectrum. Findings SiCP is homogeneously dispersed in the matrix. The increase in SiCP content decrease wear rate, but it leads to an increase in coefficient of friction. The wear rate increase and friction coefficient present different variation trends with increasing load. For A356-20%SiCP composite, when the load is less than 10 MPa, wear rate and friction coefficient under sliding speed of 400 rpm are lower than those of 200 rpm. Wear mechanism transition from abrasion, oxidation, delamination, adhesion to plastic flow as load and sliding speed increasing. Practical implications Results of this study will help guide the use of A356-SiCP in many automotive products such as brake rotors, brake pads, brake drums and pistons. Originality/value There are few paper studies the effect of particle content, applied load and sliding speed on the tribological properties of A356-SiCP composites. Aluminum matrix composites with uniform distribution of reinforcing particles were successfully prepared by using the newly developed vacuum stir casting technique.


An Aluminum Al6061 matrix composite reinforced with hybrid nano particles (Cu,Gr and Al2O3 were prepared, in the form of plates, using stir casting technique. Though the researchers are many, reinforcing a hybrid mixture in a matrix and studying the properties are unique and scanty. The material thus developed showed few unique characteristics. The machinability aspects of the material were analyzed. The conduciveness of the machining processes based on the expected surface quality and the rate of material removal were determined. Wirecut EDM was the technique adopted to machine the material and the process was optimized using the central composite design of the RSM technique. The design of experiments was done before the experimentations and the outputs were analyzed using the ANOVA option with the help of Design expert software. Such a material with good machinability could be used to develop the structural support systems like bearings, bushes, etc.


Sign in / Sign up

Export Citation Format

Share Document