scholarly journals A new combinatorial processing route to achieve an ultrafine-grained, multiphase microstructure in a medium Mn steel

Author(s):  
Saeed Sadeghpour ◽  
Mahesh C. Somani ◽  
Jukka Kömi ◽  
L. Pentti Karjalainen
Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 929 ◽  
Author(s):  
Xiao Shen ◽  
Wenwen Song ◽  
Simon Sevsek ◽  
Yan Ma ◽  
Claas Hüter ◽  
...  

The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite, achieving an extraordinary balance of mechanical properties and alloying cost. In the present work, two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen, which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount, the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.


2013 ◽  
Vol 562 ◽  
pp. 89-95 ◽  
Author(s):  
Chang Wang ◽  
Wenquan Cao ◽  
Jie Shi ◽  
Chongxiang Huang ◽  
Han Dong

2019 ◽  
Vol 761 ◽  
pp. 138050 ◽  
Author(s):  
X.G. Wang ◽  
C.H. Liu ◽  
B.B. He ◽  
C. Jiang ◽  
M.X. Huang

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1888
Author(s):  
Zigan Xu ◽  
Jiyao Li ◽  
Xiao Shen ◽  
Tarek Allam ◽  
Silvia Richter ◽  
...  

Developing medium-Mn steels (MMnS) demands a better understanding of the microstructure evolution during thermo-mechanical treatments (TMTs). This study demonstrates the relationship among processing, microstructure, and mechanical properties of a warm-rolled medium-Mn steel (MMnS) containing 1.5 wt. % Cu and 1.5 wt. % Ni. After short-time warm rolling (WR) in an intercritical temperature range, a significant quantity (40.6 vol.%) of austenite was reverted and retained after air cooling. The microstructure and tensile properties of the WR specimens were compared with two typical process routes, namely hot rolling+ cold rolling+ annealing+ tempering (CRAT) and warm rolling+ annealing+ tempering (WRAT). The WR specimen exhibited comparable tensile properties with the CRAT specimens (967 MPa yield strength, 1155 MPa tensile strength, 23% total elongation), with a remarkably shortened process route, which was derived from the dislocation accumulation and austenite reversion during rolling. The WR route stands out among the traditional CRAT and the extended WRAT routes for its excellent tensile properties and compact processing route.


2018 ◽  
Vol 385 ◽  
pp. 308-313 ◽  
Author(s):  
Vladimir Torganchuk ◽  
Dmitri A. Molodov ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The effect of cold working followed by annealing on the development of ultrafine grained microstructure and mechanical properties of an Fe-12%Mn-0.6%C-1.5%Al medium-manganese steel was studied. The steel was cold rolled with intermediate annealings and then annealed at 873 K or 923 K for 30 min. The yield strength and total elongation of the Fe-12Mn-0.6C-1.5Al steel after cold rolling were 1200 MPa and 14%, respectively. The heat treatments resulted in the formation of two phase (austenite-ferrite) ultrafine grained microstructures with average grain sizes of 0.9 to 1.2 μm, depending on the annealing temperature. The annealed ultrafine grained steel samples exhibit the yield strength in the range of 800-950 MPa, the ultimate tensile strength in the range of 1150-1200 MPa, and total elongation of 12% to 19%.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1121
Author(s):  
Fei Huang ◽  
Qiwei Chen ◽  
Hanlin Ding ◽  
Yongqiang Wang ◽  
Xiuting Mou ◽  
...  

A low-cost and easy-to-produce C–Mn–Cr automotive steel for both cold and hot forming is presented in this paper. The alloying element Cr was used to replace Mn in medium-Mn steel and instead of B in hot-formed steel, in order to achieve microstructure control and hardenability improvement, replacing the residual austenite-enhanced plasticization with multidimensional enhanced plasticization through multiphase microstructure design, grain refinement, and dispersion enhancement of second-phase particles. The products of strength and elongation for the cold-formed and hot-formed steel were 20 GPa·% and 18 GPa·%, respectively, while the tensile strengths were more than 1000 MPa and 1500 MPa, respectively. This new automotive steel was also characterized by good oxidation resistance. The mechanisms of strength and plasticization of the experimental automotive steel were analyzed.


Author(s):  
Z.H. Cai ◽  
D.L. Zhang ◽  
L.F. Ma ◽  
H. Ding ◽  
Y. Feng ◽  
...  

2021 ◽  
Vol 28 (3) ◽  
pp. 422-429
Author(s):  
Yong-jin Wang ◽  
Shuai Zhao ◽  
Ren-bo Song ◽  
Bin Hu

Author(s):  
M. K. Bai ◽  
D. P. Yang ◽  
G. D. Wang ◽  
J. H. Ryu ◽  
K. Y. Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document