Carbide precipitation behavior and mechanical properties of micro-alloyed medium Mn steel

2020 ◽  
Vol 47 ◽  
pp. 122-130 ◽  
Author(s):  
Luhan Hao ◽  
Xiang Ji ◽  
Guangqian Zhang ◽  
Wei Zhao ◽  
Mingyue Sun ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7461
Author(s):  
Chunquan Liu ◽  
Fen Xiong ◽  
Yong Wang ◽  
Yuxin Cao ◽  
Xinbin Liu ◽  
...  

This study investigates the strengthening mechanism and carbide precipitation behavior of medium Mn steel with Nb-Mo microalloy after cyclic quenching and austenite reverse transformation treatment. The results show that the Nb/Mo element not only precipitates (Nb,Mo)C in the grains, hindering the movement of dislocations and increases the strength, but also segregates at the austenite/ferrite grain boundary, thus delaying the transformation from austenite to ferrite. In addition, a large amount of nano-scale cementite is retained after cyclic quenching and austenite reverse transformation, which has a positive effect on the proportion of retained austenite in medium Mn steel. Moreover, the carbides with small size and low Mn content are dissolved, and the decomposed C and Mn content are beneficial to the nucleation of austenite during the intercritical annealing process at a temperature of 690 °C.


2021 ◽  
Vol 825 ◽  
pp. 141926
Author(s):  
Chao Wang ◽  
Liming Yu ◽  
Ran Ding ◽  
Yongchang Liu ◽  
Huijun Li ◽  
...  

2013 ◽  
Vol 583 ◽  
pp. 84-88 ◽  
Author(s):  
R. Zhang ◽  
W.Q. Cao ◽  
Z.J. Peng ◽  
J. Shi ◽  
H. Dong ◽  
...  

2018 ◽  
Vol 733 ◽  
pp. 246-256 ◽  
Author(s):  
G.K. Bansal ◽  
D.A. Madhukar ◽  
A.K. Chandan ◽  
Ashok K. ◽  
G.K. Mandal ◽  
...  

2021 ◽  
Vol 205 ◽  
pp. 116567
Author(s):  
Shuoshuo Li ◽  
Pengyu Wen ◽  
Shilei Li ◽  
Wenwen Song ◽  
Yandong Wang ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 929 ◽  
Author(s):  
Xiao Shen ◽  
Wenwen Song ◽  
Simon Sevsek ◽  
Yan Ma ◽  
Claas Hüter ◽  
...  

The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite, achieving an extraordinary balance of mechanical properties and alloying cost. In the present work, two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen, which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount, the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.


2017 ◽  
Vol 691 ◽  
pp. 51-59 ◽  
Author(s):  
Z.Z. Zhao ◽  
J.H. Liang ◽  
A.M. Zhao ◽  
J.T. Liang ◽  
D. Tang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1576
Author(s):  
Jun-Seok Oh ◽  
Young-Gy Song ◽  
Baig-Gyu Choi ◽  
Chalothorn Bhamornsut ◽  
Rujeeporn Nakkuntod ◽  
...  

High Cr white irons with various fractions of primary dendrite have been prepared through the modification of their chemical composition. Increasing C and Cr contents decreased the primary dendrite fraction. Eutectic solidification occurred with the phase fraction ratio of austenite: M7C3 = 2.76:1. The measured primary dendrite fractions were similar to the calculated results. ThermoCalc calculation successfully predicted fractions of M7C3, austenite, and M23C6. Conventional heat treatment at high temperature caused a destabilization of austenite, releasing it’s solute elements to form M23C6 carbide. Precipitation of M23C6 during destabilization preferentially occurred within primary (austenite) dendrite, however, the precipitation scarcely occurred within austenite in eutectic phase. Thus, M23C6 precipitation by destabilization was relatively easy in alloys with a high fraction of primary dendrite.


Sign in / Sign up

Export Citation Format

Share Document