Simple and rapid conversion of silicon carbide to nanodiamonds at ambient pressure

Author(s):  
Cheng Yang ◽  
Bingqiang Wei ◽  
Kejian He ◽  
Ping Xu ◽  
Xiangmin Xie ◽  
...  
2006 ◽  
Vol 21 (10) ◽  
pp. 2550-2563 ◽  
Author(s):  
Maxime J-F. Guinel ◽  
M. Grant Norton

The oxidation of both single crystal and relatively pure polycrystalline silicon carbide, between 973 and 2053 K, resulted in the formation of cristobalite, quartz, or tridymite, which are the stable crystalline polymorphs of silica (SiO2) at ambient pressure. The oxide scales were found to be pure SiO2 with no contamination resulting from the oxidizing environment. The only variable affecting the occurrence of a specific polymorph was the oxidation temperature. Cristobalite was formed at temperatures ≥1673 K, tridymite between 1073 and 1573 K, and quartz formed at 973 K. The polymorphs were determined using electron diffraction in a transmission electron microscope. These results were further confirmed using infrared and Raman spectroscopies. Cristobalite was observed to grow in a spherulitic fashion from amorphous silica. This was not the case for tridymite and quartz, which appeared to grow as oriented crystalline films. The presence of a thin silicon oxycarbide interlayer was detected at the interface between the SiC substrate and the crystalline silica using x-ray photoelectron spectroscopy.


ChemInform ◽  
2010 ◽  
Vol 32 (37) ◽  
pp. no-no
Author(s):  
Yury Gogotsi ◽  
Sascha Welz ◽  
Daniel A. Ersoy ◽  
Michael J. McNallan

Nature ◽  
2001 ◽  
Vol 411 (6835) ◽  
pp. 283-287 ◽  
Author(s):  
Yury Gogotsi ◽  
Sascha Welz ◽  
Daniel A. Ersoy ◽  
Michael J. McNallan

Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


Author(s):  
Sudeep M. Rao ◽  
Joshua Samuel ◽  
Sai S. Prakash ◽  
C. Jeffrey Brinker

Ambient pressure silica aerogel thin films have recently been prepared by exploiting reversible drying shrinkage caused by derivatization of the internal gel surface. Aerogels have porosities of upto 99.9% and due to the small size of the pores (few nanometers), large capillary stresses are produced in gels that are partially saturated with a wetting liquid. As a result of these capillary stresses, the flexible silica network undergoes strain which has been observed using environmental microscopy. This technique allows variation of the equilibrium vapor pressure and temperature, and a simultaneous monitoring of the deformation of the unconstrained film thickness. We have observed >600% deformation during the pore-filling and pore-emptying cycles. In this presentation, we discuss the unique stress-strain behavior of these films.Ref.: Sai S. Prakash, C. Jeffrey Brinker, Alan J. Hurd & Sudeep M. Rao, "Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage", Nature. Vol. 374, 30 March, 1995, 439-443.


1983 ◽  
Vol 44 (C3) ◽  
pp. C3-1001-C3-1005
Author(s):  
S. Iwabuchi ◽  
H. Fukuyama

1980 ◽  
Vol 41 (C4) ◽  
pp. C4-111-C4-112 ◽  
Author(s):  
V. V. Makarov ◽  
T. Tuomi ◽  
K. Naukkarinen ◽  
M. Luomajärvi ◽  
M. Riihonen

Sign in / Sign up

Export Citation Format

Share Document