Oxidation of silicon carbide and the formation of silica polymorphs

2006 ◽  
Vol 21 (10) ◽  
pp. 2550-2563 ◽  
Author(s):  
Maxime J-F. Guinel ◽  
M. Grant Norton

The oxidation of both single crystal and relatively pure polycrystalline silicon carbide, between 973 and 2053 K, resulted in the formation of cristobalite, quartz, or tridymite, which are the stable crystalline polymorphs of silica (SiO2) at ambient pressure. The oxide scales were found to be pure SiO2 with no contamination resulting from the oxidizing environment. The only variable affecting the occurrence of a specific polymorph was the oxidation temperature. Cristobalite was formed at temperatures ≥1673 K, tridymite between 1073 and 1573 K, and quartz formed at 973 K. The polymorphs were determined using electron diffraction in a transmission electron microscope. These results were further confirmed using infrared and Raman spectroscopies. Cristobalite was observed to grow in a spherulitic fashion from amorphous silica. This was not the case for tridymite and quartz, which appeared to grow as oriented crystalline films. The presence of a thin silicon oxycarbide interlayer was detected at the interface between the SiC substrate and the crystalline silica using x-ray photoelectron spectroscopy.

Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 415 ◽  
Author(s):  
Lingjuan Ma ◽  
Hongbin Ma ◽  
Dawei Han ◽  
Mingyue Qiu ◽  
Yafei Guan ◽  
...  

Rod-shaped Cu1Fe9Ox precursor was successfully prepared through an aqueous precipitation method. The shape and phase composition were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that Cu1Fe9Ox is composed of CuFe2O4 and Fe2O3. The reduction performance of Cu1Fe9Ox was studied by in situ XRD and H2 temperature-programmed reduction (H2-TPR). Cu/Fe3O4 nanorod catalyst is obtained through the controllable reduction of Cu1Fe9Ox nanorod, and the formed Cu/Fe3O4 nanorod catalyst does not have low-temperature water gas shift (WGS) activity, but exhibits high-temperature WGS reaction activity. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) studies showed that the main species of copper is Cu+ during the WGS reaction. The interaction between Cu and Fe3O4 rod and phase evolution of Cu species are quite different from Cu/Fe3O4 nanoparticles.


Author(s):  
D. Faulkner ◽  
R. Stevens

Silicon carbide is an extremely hard refractory material. Corrosion resistance, which is a general limitation of most carbides, is also good. These features alone make silicon carbide an important engineering material, but in addition, its low neutron absorption cross-section, and its behaviour under irradiation make it a particularly attractive material for use in a nuclear environment.The mechanical strength of self-bonded silicon carbide is primarily dependent on grain size and on the presence of free silicon in the material. Figure 1 shows a scanning electron micrograph of a fracture surface. The morphology is typical of a brittle transgranular fracture, although there is evidence of some ductility in the free silicon phase.


2001 ◽  
Vol 16 (10) ◽  
pp. 2922-2927 ◽  
Author(s):  
Yangyang Sun ◽  
Xuefeng Qian ◽  
Jie Yin ◽  
Junchao Huang ◽  
Xiaodong Ma ◽  
...  

The in situ reduction method was used to prepare nanocrystalline PbSe in a poly(acrylic acid-co-styrene) matrix. Metal precursor-doped polymer film was treated with selenium and reducing reagent (NaBH4) in ethylenediamine, leading to the formation of assemblies of crystalline semiconductive PbSe in polymer. The preparation was done at room temperature and ambient pressure. X-ray diffraction, x-ray photoelectron spectroscopy, infrared, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectra were used to characterize the as-prepared materials. The key factor for successful preparation of this composite was also discussed.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


2021 ◽  
pp. 174751982098472
Author(s):  
Jun Yu ◽  
Ying Han ◽  
Guoqing Chen ◽  
Xiuzhen Xiao ◽  
Haifang Mao ◽  
...  

The effect of carbon nanotubes on the catalytic properties of Rh-Mn-Li/SiO2 catalysts was investigated for CO hydrogenation. The catalysts were comprehensively characterized by means of X-ray power diffraction, N2 sorption, transmission electron microscope, H2–temperature-programmed reduction, CO–temperature-programmed desorption, temperature-programmed surface reaction, and X-ray photoelectron spectroscopy. The results showed that an appropriate amount of carbon nanotubes can be attached to the surface of the SiO2 sphere and can improve the Rh dispersion. Moderate Rh-Mn interaction can be obtained by doping with the appropriate amount of carbon nanotubes, which promotes the formation of strongly adsorbed CO and facilitates the progress of CO insertion, resulting in the increase in the selectivity of C2+ oxygenate synthesis.


Sign in / Sign up

Export Citation Format

Share Document