scholarly journals A highly sensitive peptide substrate for detecting two Aβ-degrading enzymes: Neprilysin and insulin-degrading enzyme

2010 ◽  
Vol 190 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Po-Ting Chen ◽  
Tai-Yan Liao ◽  
Chaur-Jong Hu ◽  
Shu-Ting Wu ◽  
Steven S.-S. Wang ◽  
...  
2006 ◽  
Vol 2 ◽  
pp. S187-S187
Author(s):  
Minerva M. Carrasquillo ◽  
Samuel G. Younkin ◽  
Mariah R. Kashino ◽  
Samantha L. Wilcox ◽  
Toros A. Dincman ◽  
...  

2021 ◽  
Author(s):  
David D. Bocach ◽  
Kierstin L. Jones ◽  
Jonathan M. Bell ◽  
Qiuchen Zheng ◽  
Noel D. Lazo ◽  
...  

Here we report proteolysis of synthetic acylated human ghrelin by recombinant human insulin-degrading enzyme (IDE). Kinetic parameters and sites of proteolytic cleavage were evaluated. Ghrelin proteolysis by IDE was inhibited by ethylenediaminetetraacetate (EDTA), a metal chelating agent. Ghrelin proteolysis appears at least somewhat specific to M16 family proteases such as IDE, as the M13 protease neprilysin (NEP) did not exhibit ghrelin proteolysis in this study. A quenched fluorogenic peptide substrate comprising the primary sites of IDE-mediated ghrelin proteolysis (Mca-QRVQQRKESKK(Dnp)-OH; Mca: 7-methoxycoumarin-3-carboxylic acid; Dnp: 2,4-dinitrophenyl) was developed and used to evaluate enzyme specificity and kinetic parameters of proteolysis. Like acyl ghrelin, Mca-QRVQQRKESKK(Dnp)-OH was efficiently cleaved by IDE central to the target sequence. We anticipate that this quenched fluorogenic peptide substrate will be of value to future studies of ghrelin proteolysis by IDE and potentially other peptidases.


2018 ◽  
Vol 15 (7) ◽  
pp. 610-617 ◽  
Author(s):  
Huifeng Zhang ◽  
Dan Liu ◽  
Huanhuan Huang ◽  
Yujia Zhao ◽  
Hui Zhou

Background: β-amyloid (Aβ) accumulates abnormally to senile plaque which is the initiator of Alzheimer's disease (AD). As one of the Aβ-degrading enzymes, Insulin-degrading enzyme (IDE) remains controversial for its protein level and activity in Alzheimer's brain. Methods: The electronic databases PubMed, EMBASE, The Cochrane Library, OVID and Sinomed were systemically searched up to Sep. 20th, 2017. And the published case-control or cohort studies were retrieved to perform the meta-analysis. Results: Seven studies for IDE protein level (AD cases = 293; controls = 126), three for mRNA level (AD cases = 138; controls = 81), and three for enzyme activity (AD cases = 123; controls = 75) were pooling together. The IDE protein level was significantly lower in AD cases than in controls (SMD = - 0.47, 95% CI [-0.69, -0.24], p < 0.001), but IDE mRNA and enzyme activity had no significant difference (SMD = 0.02, 95% CI [-0.40, 0.43] and SMD = 0.06, 95% CI [-0.41, 0.53] respectively). Subgroup analyses found that IDE protein level was decreased in both cortex and hippocampus of AD cases (SMD = -0.43, 95% CI [-0.71, -0.16], p = 0.002 and SMD = -0.53, 95% CI [-0.91, -0.15], p = 0.006 respectively). However, IDE mRNA was higher in cortex of AD cases (SMD = 0.71, 95% CI [0.14, 1.29], p = 0.01), not in hippocampus (SMD = -0.26, 95% CI [-0.58, 0.06]). Conclusions: Our results indicate that AD patients may have lower IDE protease level. Further relevant studies are still needed to verify whether IDE is one of the factors affecting Aβ abnormal accumulation and throw new insights for AD detection or therapy.


2014 ◽  
Vol 20 ◽  
pp. 25-32
Author(s):  
N Sapna Bai ◽  
OK Remadevi ◽  
TO Sasidharan ◽  
M Balachander ◽  
Priyadarsanan Dharmarajan

Context: Entomopathogenic fungi have been recognized as viable alternate options to chemicals in insect pest control. Unlike other potential biocontrol agents, fungi do not have to be ingested to infect their hosts but invade directly through the cuticle. Entry into the host involves both enzymic degradation of the cuticle barrier and mechanical pressure. Production of a range of cuticle degrading enzymes is an important event in the interaction of entomopathogenic fungi and host. Enzyme secretion is believed to be a key contributor for the virulence of a fungal isolate. Objectives: The potentiality of nine isolates of M. anisopliae were tested to produce to produce three important cuticle degrading enzymes, viz., chitinase, protease and lipase. Materials and Methods: Nine isolates of M. anisopliae were evaluated for chitinase, protease and lipase enzyme production by determining the enzyme index and activities. Results: Chitinase index of these isolates were ranged from 1.5 to 2.2 and chitinolytic activity from 0.525 to 1.560 U/ml. The isolates showed protease index in the range of 1.2 to 3.3 and the activity ranged from 0.020 to 0.114 U/ml. Lipase index ranged from 1.15 to 7.0 and the enzyme activity ranged from 0.153 to 0.500 U/ml. A strong relationship was observed between virulence of the isolates and cuticle degrading enzyme production as increased enzyme production was observed for virulent isolates. Conclusion: In the present study three isolates as (MIS2, MIS7 and MIS13) demonstrated cuticle degrading enzyme (CDE) that indicate higher virulence based on the bioassay conducted earlier by the authors as strongly substantiating the role of CDEs is considered the virulence of Metarhizium isolates. So, these isolates may be as ecofriendly insect-pest control agent in future. DOI: http://dx.doi.org/10.3329/jbs.v20i0.17648 J. bio-sci. 20: 25-32, 2012


Sign in / Sign up

Export Citation Format

Share Document