scholarly journals Impact of velocity slip and joule heating on MHD peristaltic flow through a porous medium with chemical reaction

2016 ◽  
Vol 35 (1) ◽  
pp. 227-244 ◽  
Author(s):  
Gnaneswara Reddy Machireddy ◽  
Venugopal Reddy Kattamreddy
Author(s):  
Huei Chu Weng

The presence of current flow in an electric and magnetic field results in electromagnetic force and joule heating. It is desirable to understand the roles of electromagnetic force and joule heating on gas microflow and heat transfer. In this study, a mathematical model is developed of the pressure-driven gas flow through a long isothermally heated horizontal planar microchannel in the presence of an external electric and magnetic field. The solutions for flow and thermal field and characteristics are derived analytically and presented in terms of dimensionless parameters. It is found that an electromagnetic driving force can be produced by a combined non-zero electric field and a negative magnetic field and results in an additional velocity slip and an additional flow drag. Also, a joule heating can be enhanced by an applied positive magnetic field and therefore results in an additional temperature jump and an additional heat transfer.


1973 ◽  
Vol 40 (4) ◽  
pp. 879-884 ◽  
Author(s):  
Prabhamani R. Patil ◽  
N. Rudraiah

The stability of the onset of thermal convection of a conducting viscous fluid in a porous medium has been investigated using the linear (normal mode technique) and the non-linear (energy) stability theories. Both the theories show that the stability region is increased to the maximum extent when the usual viscous dissipation is also present in addition to the dissipation due to Darcy’s resistance and Joule heating.


Sign in / Sign up

Export Citation Format

Share Document