Crystalline growth of germanium thin films on single crystal silicon substrates by solid phase crystallization

2012 ◽  
Vol 358 (17) ◽  
pp. 2166-2170 ◽  
Author(s):  
Atsushi Suzuki ◽  
Masao Isomura
1994 ◽  
Vol 356 ◽  
Author(s):  
S. D. McAdams ◽  
T. Y. Tsui ◽  
W. C. Oliver ◽  
G. M. Pharr

AbstractScratch testing has long been used to assess the adhesion of a film to its substrate. As film thicknesses have decreased, the need for greater precision and sensitivity in the scratch testing apparatus has increased. To this end, a nanoindenter was modified to make finely controlled, low-load scratches. Scratches at various loads and two orientations of a Berkovich scratching diamond were made in films of 100 nm of gold and 200 nm of copper, each on single crystal silicon. For each film type, samples with no interlayer, with an SiO2 interlayer, and with a TiW on SiO2 interlayer were tested. The scratch morphology was found to vary in a regular way with load, diamond orientation and interlayer material.


1981 ◽  
Vol 4 ◽  
Author(s):  
M. Lerme ◽  
T. Ternisien D'ouville ◽  
Duy-Phach Vu ◽  
A. Perio ◽  
G.A. Rozgonyi ◽  
...  

ABSTRACTExplosive crystallisation induced by an electron beam and by a CW Ar+ laser operating in fast scanning mode is observed for the first time on amorphized silicon layers created by implantation on either polycrystalline films deposited on Si02 or single crystal silicon substrates. The grain structure in the explosive crescents is studied by preferential chemical etching in conjunction with Nomarski optical microscopy, SEM and TEM. The results are similar to the so-called solid-phase explosive crystallization previously observed in a-Si films deposited on glass substrates.


2007 ◽  
Vol 989 ◽  
Author(s):  
Douglas C. Thompson ◽  
J. Decker ◽  
T. L. Alford ◽  
J. W. Mayer ◽  
N. David Theodore

AbstractMicrowave heating is used to activate solid phase epitaxial re-growth of amorphous silicon layers on single crystal silicon substrates. Layers of single crystal silicon were made amorphous through ion implantation with varying doses of boron or arsenic. Microwave processing occurred inside a 2.45 GHz, 1300 W cavity applicator microwave system for time-durations of 1-120 minutes. Sample temperatures were monitored using optical pyrometery. Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy were used to monitor crystalline quality in as-implanted and annealed samples. Sheet resistance readings show dopant activation occurring in both boron and arsenic implanted samples. In samples with large doses of arsenic, the defects resulting from vacancies and/or micro cluster precipitates are seen in transmission electron micrographs. Materials properties are used to explain microwave heating of silicon and demonstrate that the damage created in the implantation process serves to enhance microwave absorption.


1991 ◽  
Vol 59 (20) ◽  
pp. 2529-2531 ◽  
Author(s):  
C. A. Gamlen ◽  
E. D. Case ◽  
D. K. Reinhard ◽  
B. Huang

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


Sign in / Sign up

Export Citation Format

Share Document