Microwave Activation of Dopants & Solid Phase Epitaxy in Silicon

2007 ◽  
Vol 989 ◽  
Author(s):  
Douglas C. Thompson ◽  
J. Decker ◽  
T. L. Alford ◽  
J. W. Mayer ◽  
N. David Theodore

AbstractMicrowave heating is used to activate solid phase epitaxial re-growth of amorphous silicon layers on single crystal silicon substrates. Layers of single crystal silicon were made amorphous through ion implantation with varying doses of boron or arsenic. Microwave processing occurred inside a 2.45 GHz, 1300 W cavity applicator microwave system for time-durations of 1-120 minutes. Sample temperatures were monitored using optical pyrometery. Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy were used to monitor crystalline quality in as-implanted and annealed samples. Sheet resistance readings show dopant activation occurring in both boron and arsenic implanted samples. In samples with large doses of arsenic, the defects resulting from vacancies and/or micro cluster precipitates are seen in transmission electron micrographs. Materials properties are used to explain microwave heating of silicon and demonstrate that the damage created in the implantation process serves to enhance microwave absorption.

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


1989 ◽  
Vol 4 (5) ◽  
pp. 1227-1232 ◽  
Author(s):  
J. J. Grob ◽  
A. Grob ◽  
P. Thevenin ◽  
P. Siffert ◽  
C. d'Anterroches ◽  
...  

Oxygen ions were implanted into (100) oriented single crystal Si at energies in the range of 0.6 to 2 MeV at normal and oblique (60°) incidences. Oxygen concentration profiles were measured using the 16O(d, α)14N nuclear reaction for 900 keV deuterons. The experimentally measured oxygen distributions were subsequently fitted to the theoretical profiles calculated assuming the Pearson VI distribution. The distribution moments (Rp, ΔRp, ΔR⊥ skewness, and kurtosis) were deduced as the best fit parameters and compared to the computer simulation results (TRIM 87 and PRAL). Whatever the calculation method, the measured Rp and ΔRp values are close to those predicted by the theory. Deeply buried SiO2 layers were formed using a single step implantation and annealing process. A dose of 1.8 × 1018/cm2 of 2 MeV O+ was implanted into the Si substrate maintained at a temperature of 550 °C. The implanted samples were characterized using the Rutherford backscattering (RBS)/channeling technique and cross-sectional transmission electron microscopy (XTEM). The implanted samples were subsequently annealed at 1350 °C for 4 h in an Ar ambient. The annealing process results in creating a continuous SiO2 layer, 0.4 μm thick below a 1.6 μm thick top single crystal silicon overlayer. The buried SiO2 layer contains the well-known faceted Si inclusions. The density of dislocations within the top Si layer remains lower than the XTEM detection limit of 107/cm2. Between the Si overlayer and the buried SiO2 a layer of faceted longitudinal SiO2 precipitates is present. A localized dislocation network links the precipitates to the buried SiO2 layer.


1981 ◽  
Vol 4 ◽  
Author(s):  
M. Lerme ◽  
T. Ternisien D'ouville ◽  
Duy-Phach Vu ◽  
A. Perio ◽  
G.A. Rozgonyi ◽  
...  

ABSTRACTExplosive crystallisation induced by an electron beam and by a CW Ar+ laser operating in fast scanning mode is observed for the first time on amorphized silicon layers created by implantation on either polycrystalline films deposited on Si02 or single crystal silicon substrates. The grain structure in the explosive crescents is studied by preferential chemical etching in conjunction with Nomarski optical microscopy, SEM and TEM. The results are similar to the so-called solid-phase explosive crystallization previously observed in a-Si films deposited on glass substrates.


1996 ◽  
Vol 441 ◽  
Author(s):  
M. Libera ◽  
A. Quintero

AbstractWe have demonstrated that the formation of C54 TiSi2 on Boron-doped single crystal silicon substrates, under RTA annealing conditions in a Nitrogen ambient, leads to a thicker TiN capping surface layer, thinner silicide layer, higher C49 to C54 transformation temperature and greater interface roughness compared to C54 TiSi 2 formation on undoped single crystal silicon substrates. Titanium films 32 nm thick were deposited on undoped and boron-doped single crystal silicon substrates. The films were annealed at 3 /C/isn nitrogen to final quenching temperatures between 500 °C and 900 TC. Ex-situ four point probe sheet resistance, cross sectional transmission electron microscopy (XTEM), high resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD) were used to analyze the resulting TiN on TiSi2 bilayer. The C49 to C54 transformation occurs circa 760 TC and 810 TC for the undoped and boron-doped cases respectively. HRTEM observations reveal a thick 20 nm TIN layer on the C54 TiSi2 film in the boron-doped case but only fine dispersed TiN particles embedded on the top of the silicide in the undoped case. It was observed that the resultant silicide in the boron-doped case was thinner and the TiSi2 /Si(100) interface is rougher. XRD and TEM analysis show that in the boron doped case, there is a preferred C54 (040) orientation compared to a random orientation for the undoped case.


1997 ◽  
Vol 483 ◽  
Author(s):  
S. A. Ustin ◽  
C. Long ◽  
L. Lauhon ◽  
W. Ho

AbstractCubic SiC films have been grown on Si(001) and Si(111) substrates at temperatures between 600 °C and 900 °C with a single supersonic molecular beam source. Methylsilane (H3SiCH3) was used as the sole precursor with hydrogen and nitrogen as seeding gases. Optical reflectance was used to monitor in situ growth rate and macroscopic roughness. The growth rate of SiC was found to depend strongly on substrate orientation, methylsilane kinetic energy, and growth temperature. Growth rates were 1.5 to 2 times greater on Si(111) than on Si(001). The maximum growth rates achieved were 0.63 μm/hr on Si(111) and 0.375μm/hr on Si(001). Transmission electron diffraction (TED) and x-ray diffraction (XRD) were used for structural characterization. In-plane azimuthal (ø-) scans show that films on Si(001) have the correct 4-fold symmetry and that films on Si(111) have a 6-fold symmetry. The 6-fold symmetry indicates that stacking has occurred in two different sequences and double positioning boundaries have been formed. The minimum rocking curve width for SiC on Si(001) and Si(111) is 1.2°. Fourier Transform Infrared (FTIR) absorption was performed to discern the chemical bonding. Cross Sectional Transmission Electron Microscopy (XTEM) was used to image the SiC/Si interface.


Sign in / Sign up

Export Citation Format

Share Document