Post-irradiation microstructural examination of EUROFER-ODS steel irradiated at 300°C and 400°C

2021 ◽  
Vol 557 ◽  
pp. 153259
Author(s):  
M. Klimenkov ◽  
U. Jäntsch ◽  
M. Rieth ◽  
M. Dürrschnabel ◽  
A. Möslang ◽  
...  
Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


Author(s):  
Robert C. Rau

Previous work has shown that post-irradiation annealing, at temperatures near 1100°C, produces resolvable dislocation loops in tungsten irradiated to fast (E > 1 MeV) neutron fluences of about 4 x 1019 n/cm2 or greater. To crystallographically characterize these loops, tilting experiments were carried out in the electron microscope on a polycrystalline specimen which had been irradiated to 1.5 × 1021 n/cm2 at reactor ambient temperature (∼ 70°C), and subseouently annealed for 315 hours at 1100°C. This treatment produced large loops averaging 1000 Å in diameter, as shown in the micrographs of Fig. 1. The orientation of this grain was near (001), and tilting was carried out about axes near [100], [10] and [110].


Author(s):  
W. W. Davison ◽  
R. C. Buchanan

Yttria stabilized zirconia (YSZ) has become a significant technological material due to its high ionic conductivity, chemical inertness, and good mechanical properties. Temperatures on the order of 1700°C are required, however, to densify YSZ to the degree necessary for good electrical and mechanical properties. A technique for lowering the densification temperature is the addition of small amounts of material which facilitate the formation of a liquid phase at comparatively low temperatures. In this study, sintered microstructures obtained from the use of Al2O3 as a sintering aid were examined with scanning, transmission, and scanning transmission microscopy (SEM, TEM, and STEM).


2006 ◽  
Vol 22 (03) ◽  
Author(s):  
Kamal S. Forootan ◽  
Ahmad Maghari ◽  
Lida Saraf
Keyword(s):  

1961 ◽  
Author(s):  
James J. Nickson ◽  
Arvin S. Glicksman
Keyword(s):  

2021 ◽  
Vol 27 (S1) ◽  
pp. 3306-3307
Author(s):  
Pradyumna Parida ◽  
Shyam Kanta Sinha ◽  
Arup Dasgupta

Author(s):  
Krzysztof Nowik ◽  
Zbigniew Oksiuta

AbstractNanocrystalline oxide-dispersion strengthened ferritic alloy formation and its annealing behavior were examined through modern X-ray diffraction pattern analysis and supplemented by microhardness and microscopic measurements. The basic microstructure features, with particular emphasis on evolution of domain size distribution and defect content during mechanical and thermal treatment, were quantified via the whole powder pattern modeling approach. The microstructure of the powdered alloy, formed during mechanical alloying, evolved toward nanocrystalline state consisting of narrow dispersion of very fine crystallites with substantial dislocation density, which exhibited relatively high stability against elevated temperature. It was shown that crystallite size is seriously sustained by the grain-boundary strain, therefore coarsening of grains begins only after the density of dislocations drops below certain level. Obtaining correct results for the annealing-related data at specific temperature range required the incorporation of the “double-phase” model, indicating possible bimodal domain size distribution. The dislocation density and grain size were found not to be remarkably affected after consolidation by hot isostatic pressing.


2013 ◽  
Vol 47 (4) ◽  
pp. 376-381 ◽  
Author(s):  
Mihaela Jurdana ◽  
Maja Cemazar ◽  
Katarina Pegan ◽  
Tomaz Mars

Abstract Background. Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Materials and methods. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin - 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Results. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Conclusions. Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions.


Sign in / Sign up

Export Citation Format

Share Document