Seismic behavior and design of repairable precast RC beam–concrete-filled square steel tube column joints with energy-dissipating bolts

2021 ◽  
pp. 103419
Author(s):  
Yue Zhang ◽  
Dongsheng Li
2014 ◽  
Vol 638-640 ◽  
pp. 1923-1927
Author(s):  
Nan Li ◽  
Ya Jun Xi

A new type of joint between Concrete-filled Square Steel Tube columns and steel beam is proposed in this paper, and the seismic behavior of this type of joint under low-reversed cyclic loading experiment is researched. Ductility behavior, dissipation of seismic energy of this joint under horizontal, repeat load are analyzed. The experimental results showed that all specimens have good ductility and energy dissipation capacity. The story angle drift ductility ratios are μ=3.23~3.63, and the equivalent viscous damping coefficients are he=0.25~0.35,which meet the needs of the code for seismic design of building.


2011 ◽  
Vol 368-373 ◽  
pp. 2394-2397
Author(s):  
Xian Tie Wang ◽  
You Su Fu Ma ◽  
Gu Qiu Luo

This paper presents a nonlinear numerical analysis on the seismic behavior of concrete filled square steel tube (CFST) columns and steel beam planar frame with through bolt-endplate beam-column connection, by using the finite element analysis modeling with ABAQUS. Parametric studies were conducted to investigate the influence of axial load ratio and beam-to-column linear stiffness ratio on the seismic behavior of composite frames. The analysis results were in good agreement with the experiment results. The analysis results showed that CFST frame with through bolt-endplate beam-column connection had good seismic behavior. The increase of axial load ratio will degrade the horizontal load bearing capacity and increase the energy dissipation capability. The increase of beam-to-column linear stiffness ratio will increase the horizontal load bearing capacity and degrade the energy dissipation capability.


2015 ◽  
Vol 744-746 ◽  
pp. 207-210
Author(s):  
Nan Li ◽  
Dong Ning Zhang

A type of joint between Concrete-filled Square Steel Tube columns and steel beam is proposed in this paper, Based on joint experiment, appropriate material stress-strain relations and failure criteria are proposed, numerical simulation by finite element program is conducted under monotonic and cyclic loading and the seismic behavior of the joints under low-reversed cyclic loading is researched. Through the data contrast, it is proved that this type of joint has nice seismic behavior.


2021 ◽  
Vol 283 ◽  
pp. 01028
Author(s):  
Wang Meng ◽  
Tao Yi

This paper has carried out the quasi-static tests of five specimens of FRP-UHPC column-steel beam joints with core columns, and the extensive parameter analysis of the joints by numerical simulation. The results show that the Concrete-filled square steel tube column with core column -Steel Beam Joints have strong bearing capacity. It has excellent deformability, stiffness and energy dissipation capacity, and works well under the condition of high axial compression ratio. The bearing capacity of the replacement beam specimen does not deteriorate significantly, which indicates that the Concrete-filled square steel tube column with core column -Steel Beam Joints is replaceable.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


Sign in / Sign up

Export Citation Format

Share Document