scholarly journals Site specific changes in gene expression and cartilage metabolism during early experimental osteoarthritis

2004 ◽  
Vol 12 (4) ◽  
pp. 284-295 ◽  
Author(s):  
H. Dumond ◽  
N. Presle ◽  
P. Pottie ◽  
S. Pacquelet ◽  
B. Terlain ◽  
...  
1983 ◽  
Vol 258 (17) ◽  
pp. 10805-10811 ◽  
Author(s):  
M L Johnson ◽  
J Levy ◽  
S C Supowit ◽  
L Y Yu-Lee ◽  
J M Rosen

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Xiong ◽  
Xiangyun Cheng ◽  
Chao Zhang ◽  
Roland Manfred Klar ◽  
Tao He

Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) remains one of the best-established techniques to assess gene expression patterns. However, appropriate reference gene(s) selection remains a critical and challenging subject in which inappropriate reference gene selction can distort results leading to false interpretations. To date, mixed opinions still exist in how to choose the most optimal reference gene sets in accodrance to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guideline. Therefore, the purpose of this study was to investigate which schemes were the most feasible for the identification of reference genes in a bone and cartilage bioengineering experimental setting. In this study, rat bone mesenchymal stem cells (rBMSCs), skeletal muscle tissue and adipose tissue were utilized, undergoing either chondrogenic or osteogenic induction, to investigate the optimal reference gene set identification scheme that would subsequently ensure stable and accurate interpretation of gene expression in bone and cartilage bioengineering. Results The stability and pairwise variance of eight candidate reference genes were analyzed using geNorm. The V0.15- vs. Vmin-based normalization scheme in rBMSCs had no significant effect on the eventual normalization of target genes. In terms of the muscle tissue, the results of the correlation of NF values between the V0.15 and Vmin schemes and the variance of target genes expression levels generated by these two schemes showed that different schemes do indeed have a significant effect on the eventual normalization of target genes. Three selection schemes were adopted in terms of the adipose tissue, including the three optimal reference genes (Opt3), V0.20 and Vmin schemes, and the analysis of NF values with eventual normalization of target genes showed that the different selection schemes also have a significant effect on the eventual normalization of target genes. Conclusions Based on these results, the proposed cut-off value of Vn/n + 1 under 0.15, according to the geNorm algorithm, should be considered with caution. For cell only experiments, at least rBMSCs, a Vn/n + 1 under 0.15 is sufficient in RT-qPCR studies. However, when using certain tissue types such as skeletal muscle and adipose tissue the minimum Vn/n + 1 should be used instead as this provides a far superior mode of generating accurate gene expression results. We thus recommended that when the stability and variation of a candidate reference genes in a specific study is unclear the minimum Vn/n + 1 should always be used as this ensures the best and most accurate gene expression value is achieved during RT-qPCR assays.


2021 ◽  
Author(s):  
Taylor Reiter ◽  
Rachel Montpetit ◽  
Ron Runnebaum ◽  
C. Titus Brown ◽  
Ben Montpetit

AbstractGrapes grown in a particular geographic region often produce wines with consistent characteristics, suggesting there are site-specific factors driving recurrent fermentation outcomes. However, our understanding of the relationship between site-specific factors, microbial metabolism, and wine fermentation outcomes are not well understood. Here, we used differences in Saccharomyces cerevisiae gene expression as a biosensor for differences among Pinot noir fermentations from 15 vineyard sites. We profiled time series gene expression patterns of primary fermentations, but fermentations proceeded at different rates, making analyzes of these data with conventional differential expression tools difficult. This led us to develop a novel approach that combines diffusion mapping with continuous differential expression analysis. Using this method, we identified vineyard specific deviations in gene expression, including changes in gene expression correlated with the activity of the non-Saccharomyces yeast Hanseniaspora uvarum, as well as with initial nitrogen concentrations in grape musts. These results highlight novel relationships between site-specific variables and Saccharomyces cerevisiae gene expression that are linked to repeated wine fermentation outcomes. In addition, we demonstrate that our analysis approach can extract biologically relevant gene expression patterns in other contexts (e.g., hypoxic response of Saccharomyces cerevisiae), indicating that this approach offers a general method for investigating asynchronous time series gene expression data.ImportanceWhile it is generally accepted that foods, in particular wine, possess sensory characteristics associated with or derived from their place of origin, we lack knowledge of the biotic and abiotic factors central to this phenomenon. We have used Saccharomyces cerevisiae gene expression as a biosensor to capture differences in fermentations of Pinot noir grapes from 15 vineyards across two vintages. We find that gene expression by non-Saccharomyces yeasts and initial nitrogen content in the grape must correlates with differences in gene expression among fermentations from these vintages. These findings highlight important relationships between site-specific variables and gene expression that can be used to understand, or possibly modify, wine fermentation outcomes. Our work also provides a novel analysis method for investigating asynchronous gene expression data sets that is able to reveal both global shifts and subtle differences in gene expression due to varied cell – environment interactions.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Takuya Yoda ◽  
Masahito Hosokawa ◽  
Kiyofumi Takahashi ◽  
Chikako Sakanashi ◽  
Haruko Takeyama ◽  
...  

Author(s):  
Carolin Walther ◽  
Sandra Zumbülte ◽  
Christoph M. Faerber ◽  
Richard Johannes Wierichs ◽  
Hendrik Meyer-Lueckel ◽  
...  

Abstract Objectives Detecting bacterial activity is considered a promising approach to monitor shifts from symbiosis to dysbiosis in oral microbiome. The present study aimed at investigating both the relative bacterial activity and the lactate dehydrogenase (ldh) gene expression of caries-associated bacteria in a site-specific natural biofilm. Material and methods Sixty subjects (age, mean ± SE: 30.1 ± 1.4) were allocated to two groups: caries-free subjects (CF) or caries-active subjects (CA). CF presented one sound surface (CFS, n = 30). CA presented two donor sites: a cavitated caries lesion (CAC, n = 30) and a sound reference surface (CAS, n = 30). Real-time quantitative PCR (q-PCR) on species or genus level and total bacteria was performed targeting the 16S gene, the 16S rRNA, the ldh gene, and the ldh mRNA (increasing 16S ribosomal RNA copy numbers can function as an indicator of increased energy metabolism). As the 16S rRNA abundance represents the number of ribosomes, while the 16S gene abundance represents the number of genomes, the quotient of the relative abundances functions as a measure for the relative bacterial activity (%). Results Both lactobacilli and S. mutans showed the highest relative bacterial activity in CAC ((mean ± SE) 218 ± 60% and 61 ± 16%, respectively) and the lowest values for both sound reference surfaces (69 ± 48%; 8 ± 3%). Significant differences were found between CAC and CAS as well as between CAC and CFS for both lactobacilli and S. mutans (p < 0.05). The ldh gene expression of lactobacilli and S. mutans only showed moderate values in CAC (1.90E+03 ± 2.11E+03; 2.08E+04 ± 4.44E+04 transcripts/μl) and CFS (2.04E+03 ± 2.74E+03; 8.16E+03 ± 6.64E+03 transcripts/μl); consequently no significant differences were detected. Conclusion and clinical relevance Caries-associated bacteria (lactobacilli and S. mutans) showed the highest relative bacterial activity in plaque of cavitated lesions, the lowest in sound surfaces, allowing the detection of a significant activity shift in health and disease for caries-active patients. However, no significant differences in ldh gene expression could be determined.


2010 ◽  
Vol 22 (2) ◽  
pp. 168-e52 ◽  
Author(s):  
m. böttner ◽  
f. bär ◽  
h. von koschitzky ◽  
k. tafazzoli ◽  
u. j. roblick ◽  
...  

2002 ◽  
Vol 81 (10) ◽  
pp. 711-715 ◽  
Author(s):  
S. Yamada ◽  
S. Saeki ◽  
I. Takahashi ◽  
K. Igarashi ◽  
H. Shinoda ◽  
...  

Bone and cartilage metabolism is known to be more active during rest than during periods of activity. The purpose of this study was to examine the hypothesis that mandibular retractive force could be more effective when applied to rats during rest. Mandibular retractive force caused a considerable reduction in the condylar length in experimental groups, and the magnitude of this reduction was greater in the Light-period (08:00-20:00) group than in the Dark-period (20:00-08:00) group. The differentiation and proliferation of chondrocytes were inhibited in animals in the Light-period group, compared with those in the Dark-period group. These results suggest that the orthopedic effects of mandibular retractive force vary depending on the time of day the force is applied, and that such force may be more effective while animals are resting than while they are active.


Sign in / Sign up

Export Citation Format

Share Document