Synthesis of iron(III)-carbonyl complex with variable wavelength range for CO release depending on protonation and deprotonation of axial phosphorous ligands

2021 ◽  
Vol 943 ◽  
pp. 121843
Author(s):  
Seiya Tanaka ◽  
Natsuo Nomura ◽  
Takanori Nishioka ◽  
Masakazu Hirotsu ◽  
Hiroshi Nakajima
2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


2012 ◽  
Vol 132 (2) ◽  
pp. 25-30 ◽  
Author(s):  
Nozomu Hirokubo ◽  
Hiroshi Komatsu ◽  
Nobuaki Hashimoto ◽  
Makoto Sonehara ◽  
Toshiro Sato

2012 ◽  
Vol E95.C (7) ◽  
pp. 1272-1275
Author(s):  
Takanori SUZUKI ◽  
Hideo ARIMOTO ◽  
Takeshi KITATANI ◽  
Aki TAKEI ◽  
Takafumi TANIGUCHI ◽  
...  

2018 ◽  
Author(s):  
Richard Kong ◽  
Mark Crimmin

<i>The formation of carbon chains by the coupling of COx (X = 1 or 2) units on transition metals is a fundamental step relevant to Fischer-Tropsch catalysis. Fischer-Tropsch catalysis produces energy dense liquid hydrocarbons from synthesis gas (CO and H2) and has been a mainstay of the energy economy since its discovery nearly a century ago. Despite detailed studies aimed at elucidating the steps of catalysis, experimental evidence for chain growth (Cn to Cn+1 ; n > 2) from the reaction of CO with metal complexes is unprecedented. In this paper, we show that carbon chains can be grown from sequential reactions of CO or CO2 with a transition metal carbonyl complex. By exploiting the cooperative effect of transition and main group metals, we document the first example of chain propagation from sequential coupling of CO units (C1 to C3 to C4), along with the first example of incorporation of CO2 into the growing carbon chain.</i><br>


Sign in / Sign up

Export Citation Format

Share Document