A pentafluorophenyl functionalized RuII-probe having halogen bond center toward recognition and sensing of perrhenate and dihydrogen phosphate

Author(s):  
Sahidul Mondal ◽  
Ambreen Rashid ◽  
Pradyut Ghosh
2015 ◽  
Vol 13 (9) ◽  
pp. 2582-2587 ◽  
Author(s):  
Stuart P. Cornes ◽  
Charles H. Davies ◽  
David Blyghton ◽  
Mark R. Sambrook ◽  
Paul D. Beer

A [2]rotaxane anion host that switches selectivity from dihydrogen phosphate to the halides upon substituting a hydrogen bond donor group for a halogen bond donor group within the axle component is described.


2020 ◽  
Author(s):  
Revannath L. Sutar ◽  
Nikita Erochok ◽  
Stefan Huber

A series of cationic monodentate and bidentate iodo(benz)­imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a <i>syn</i>-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BAr<sup>F</sup><sub>4</sub> salts, PF<sub>6</sub> or OTf salts were either inactive or showed background reaction. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yun-Yan Xia ◽  
Qiao-Gen Zou ◽  
Yu-Fei Yang ◽  
Qian Sun ◽  
Cheng-Qun Han

Background: High-performance liquid chromatography (HPLC) method has been used to detect related impurities of perampanel. However, the detection of impurities is incomplete, and the limits of quantification and detection are high. A sensitive, reliable method is in badly to be developed and applied for impurity detection of perampanel bulk drug. Objective: Methodologies utilising HPLC and gas chromatography (GC) were established and validated for quantitative determination of perampanel and its related impurities (a total of 10 impurities including 2 genotoxic impurities). Methods: The separation was achieved on a Dikma Diamonsil C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.01 mol/L potassium dihydrogen phosphate solution (A) and acetonitrile (B) in gradient elution mode. The compound 2-bromopropane was determined on an Agilent DB-624 column (0.32 mm × 30 m, 1.8 μm) by electron capture detector (μ-ECD) with split injection ratio of 1:5 and proper gradient temperature program. Result: Both HPLC and GC methods were established and validated to be sensitive, accurate and robust according to International Council for Harmonization (ICH) guidelines. The methods developed were linear in the selected concentration range (R 2≥0.9944). The average recovery of all impurities was between 92.6% and 103.3%. The possible production mechanism of impurities during the synthesis and degradation processes of perampanel bulk drug was also discussed. Five impurities were analyzed by liquid chromatography–mass spectrometry (LC-MS). Moreover, two of them were simultaneously characterized by LC-MS, IR and NMR. Conclusion: The HPLC and GC methods were developed and optimized, which could be applied for quantitative detection of the impurities, and further stability study of perampanel.


2021 ◽  
Author(s):  
Mark Lautens ◽  
Austin D. Marchese ◽  
Timur Adrianov
Keyword(s):  

1985 ◽  
Vol 40 (11) ◽  
pp. 1164-1166
Author(s):  
O. P. Agarwal ◽  
Prem Chand

Results of the optical absorption study of vanadyl ion doped in magnesium ammonium sulphate hexahydrate, rubidium sulphate and potassium dihydrogen phosphate single crystals at RT are reported. The nature of optical bands suggests a C4v symmetry of the Vanadyl complexes in conformity with the EPR results. Powder EPR data and optical data are correlated to obtain the MO coefficients.


Sign in / Sign up

Export Citation Format

Share Document