UPLC-MS/MS method for the simultaneous quantification of caffeine and illicit psychoactive drugs in hair using a single-step high-speed grinding extraction – Insights into a cut-off value for caffeine abuse

Author(s):  
Shan Jiang ◽  
Yuling Zhong ◽  
Hongwei Qiao ◽  
Bin Di ◽  
Jie Chen ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 933
Author(s):  
Mario Lucido

The method of analytical preconditioning combines the discretization and the analytical regularization of a singular integral equation in a single step. In a recent paper by the author, such a method has been applied to a spectral domain integral equation formulation devised to analyze the propagation in polygonal cross-section microstrip lines, which are widely used as high-speed interconnects in monolithic microwave and millimeter waves integrated circuits. By choosing analytically Fourier transformable expansion functions reconstructing the behavior of the fields on the wedges, fast convergence is achieved, and the convolution integrals are expressed in closed form. However, the coefficient matrix elements are one-dimensional improper integrals of oscillating and, in the worst cases, slowly decaying functions. In this paper, a novel technique for the efficient evaluation of such kind of integrals is proposed. By means of a procedure based on Cauchy integral theorem, the general coefficient matrix element is written as a linear combination of fast converging integrals. As shown in the numerical results section, the proposed technique always outperforms the analytical asymptotic acceleration technique, especially when highly accurate solutions are required.


2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


Author(s):  
Yao Wu ◽  
Pan Lu ◽  
Feihong Lin ◽  
Wencheng Bao ◽  
Meina Qu ◽  
...  

2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


2006 ◽  
Vol 304-305 ◽  
pp. 492-496 ◽  
Author(s):  
Yu Hou Wu ◽  
L.X. Zhang ◽  
Ke Zhang ◽  
Song Hua Li

As one of the modern manufacture technology, high-speed precision grinding takes an important part in the modern manufacture field. With the development of the technology on high-speed spindle unit, linear precision high-speed feed unit, manufacture of grinding wheel, measurement etc, a great deal of research achievements make it possible for high-speed precision grinding. In this paper, using PMAC (Programmable Multi-Axis Controller)—PC as the central controller, a new kind of high-speed precision grinder is designed and manufactured. The servo control technology of linear motor is investigated. The dynamic performances of the machine are analyzed according to the experimental results. Elliptical workpieces have been machined with this new high-speed precision grinder. Based on these research results, a very helpful approach is provided for the precision grinding of complicated workpieces, and these results promote the development of high speed grinding too.


2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


Sign in / Sign up

Export Citation Format

Share Document