Physiological dissection of blue and red light regulation of apical dominance and branching in M9 apple rootstock growing in vitro

2008 ◽  
Vol 165 (17) ◽  
pp. 1838-1846 ◽  
Author(s):  
Rosario Muleo ◽  
Stefano Morini
Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1017
Author(s):  
Guem-Jae Chung ◽  
Jin-Hui Lee ◽  
Myung-Min Oh

This study aimed to explore the suitable light quality condition for ex vitro acclimation of M9 apple plantlets. Light quality treatments were set as followed; monochromatic LEDs (red (R), green (G), blue (B)) and polychromatic LEDs (R:B = 7:3, 8:2 and 9:1; R:G:B = 6:1:3, 7:1:2 and 8:1:1). Plant height of R, R9B1, and R8G1B1 treatments were significantly higher than the other treatments. The number of leaves and SPAD value of B were significantly higher than the other treatments. Root fresh weights of R9B1 and R7G1B2 treatments showed an increase of at least 1.7-times compared to R, G and R8B2. R8G1B1 accumulated higher starch contents than the other treatments. Photosynthetic rate of R9B1 and R8B2 were significantly higher than the other treatments. In terms of stomatal conductance and transpiration rate, treatments with high blue ratio such as B, R7B3 had higher values. Rubisco concentration was high in R and B among monochromatic treatments. In conclusion, red light was effective to increase photosynthetic rate and biomass and blue light increased chlorophyll content and stomatal conductance. Therefore, for R9B1 and R8G1B1, a mixture of high ratio of red light with a little blue light would be proper for the acclimation of in vitro-propagated apple rootstock M9 plantlets to an ex vitro environment.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460e-460 ◽  
Author(s):  
Marisa F. de Oliveira ◽  
Gerson R. de L. Fortes ◽  
João B. da Silva

The aim of this work was to evaluate the organogenesis of Marubakaido apple rootstock under different aluminium concentratons. The explants were calli derived from apple internodes treated with either 2,4-dichlorophenoxyacetic acid or pichloram at 0.5 and 1.0 μM and under five different aluminium concentrations (0, 5, 10, 15, 20 mg/L). These calli were then treated with aluminium at 0, 5, 10, 15, and 20 mg/L. It was observed shoot regeneration only for those calli previously treated with pichloram. There were no significant difference among the aluminium concentrations.


Optik ◽  
2021 ◽  
Vol 234 ◽  
pp. 166590
Author(s):  
Seok-Ho Jeong ◽  
Jung-Young Kim ◽  
Xiao Xiao ◽  
Young-Suk Kim
Keyword(s):  

2018 ◽  
Vol 77 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Erna Karalija ◽  
Sanja Ćavar Zeljković ◽  
Petr Tarkowski ◽  
Edina Muratović ◽  
Adisa Parić

AbstractKnautia sarajevensisis an endemic plant of the Dinaric Alps and is mainly distributed on Bosnian Mountains. Due to the quite large flower heads and easy maintenance, this plant has a potential use as a substitute ornamental plant forK. arvensisin perennial beds. The current study evaluated the germination process in different treatments in an attempt to suppress dormancy and increase germination rate, and to develop a successful protocol for micropropagation. An over 60% germination rate was achieved through cultivation of seeds on MS basal medium with reduced mineral nutrient composition and the absence of sucrose. On the other hand, a below 10% germination rate was achieved with untreated seeds. Suppression of apical dominance was achieved through application of high concentrations of kinetin, apical shoot decapitation or cultivation of shoots in liquid media. Overall, liquid cultures were more successful as a micropropagation system for this plant. Shoots spontaneously developed roots on multiplication treatments and were successfully acclimatized. Moreover, phenolic compound profile was analysed in the light of the possible medicinal potential of this plant. Variable amounts of total phenolic compounds as well as individual phenolics were recorded, according to treatment and solidification of media. An increase in rosmarinic acid content was reported for kinetin treatments and acclimatized plants comparing to mother plants in natural habitat. The present study shows that choice of cytokinin concentration, explant type as well as culture type influences not only shoot proliferation and apical dominance suppression but alsoin vitroproduction of phenolics.


2020 ◽  
Author(s):  
Deborah A. Smithen ◽  
Susan Monro ◽  
Mitch Pinto ◽  
John A. Roque III ◽  
Roberto M. Diaz-Rodriguez ◽  
...  

A new family of ten dinuclear Ru(II) complexes based on the bis[pyrrolyl Ru(II)] triad scaffold, where two Ru(bpy)<sub>2</sub> centers are separated by a variety of organic linkers, was prepared to evaluate the influence of the organic chromophore on the spectroscopic and in vitro photodynamic therapy (PDT) properties of the compounds. The bis[pyrrolyl Ru(II)] triads absorbed strongly throughout the visible region, with several members having molar extinction coefficients (e) ≥10<sup>4</sup> at 600–620 nm and longer. Phosphorescence quantum yields were generally less than 0.1% and in some cases undetectable. The singlet oxygen quantum yields ranged from 5% to 77% and generally correlated with their photocytotoxicities toward human leukemia (HL-60) cells regardless of the wavelength of light used. Dark cytotoxicities varied ten-fold, with EC<sub>50</sub> values in the range of 10–100 µM and phototherapeutic indices (PIs) as large as 5,400 and 260 with broadband visible (28 J cm<sup>-2</sup>, 7.8 mW cm<sup>-2</sup>) and 625-nm red (100 J cm<sup>-2</sup>, 42 mW cm<sup>-2</sup>) light, respectively. The bis[pyrrolyl Ru(II)] triad with a pyrenyl linker (5h) was especially potent, with an EC50 value of 1 nM and PI >27,000 with visible light and subnanomolar activity with 625-nm light (100 J cm<sup>-2</sup>, 28 mW cm<sup>-2</sup>). The lead compound 5h was also tested in a tumor spheroid assay using the HL60 cell line and exhibited greater photocytotoxcicity in this more resistant model (EC<sub>50</sub>=60 nM and PI>1,200 with 625-nm light) despite a lower dark cytotoxicity. The in vitro PDT effects of 5h extended to bacteria, where submicromolar EC<sub>50</sub> values and PIs >300 against <i>S. mutans</i> and <i>S. aureus </i>were obtained with visible light. This activity was attenuated with 625-nm red light, but PIs were still near 50. The ligand-localized <sup>3</sup>ππ* state contributed by the pyrenyl linker of 5h likely plays a key role in its phototoxic effects toward cancer cells and bacteria.<br><br>


Author(s):  
Tatiane Dulcineia Silva ◽  
Diego Silva Batista ◽  
Evandro Alexandre Fortini ◽  
Kamila Motta de Castro ◽  
Sérgio Heitor Sousa Felipe ◽  
...  
Keyword(s):  

2019 ◽  
Vol 805 ◽  
pp. 141-145
Author(s):  
Nguyen Phuc Thien

The aim of these studies was mainly to investigate the effects of monochromatic LEDs applied singly on the in vitro plant growth and morphogenesis. Various morphological and physiological parameters are considered that influence the growth and development of plants in vitro under red LED light as compared to those under normal light. Upon exposure to LED, in vitro-raised plants have shown significant improvements in growth and morphogenesis. In particular, red and blue lights, either alone or in combination, have a significant influence on plant growth. The present study gives an overview of the fundamentals of LEDs and describes their effects on in vitro plant growth and morphogenesis and their future potentials. The main objective of this study was to carry out line and combing ability of plant growth on tomato.


2014 ◽  
Vol 47 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Yi-Shuan Sheen ◽  
Sabrina Mai-Yi Fan ◽  
Chih-Chieh Chan ◽  
Yueh-Feng Wu ◽  
Shiou-Hwa Jee ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document