Single nucleotide polymorphisms in the vitamin D pathway associating with circulating concentrations of vitamin D metabolites and non-skeletal health outcomes: Review of genetic association studies

Author(s):  
David A. Jolliffe ◽  
Robert T. Walton ◽  
Christopher J. Griffiths ◽  
Adrian R. Martineau
2002 ◽  
Vol 30 (Supplement) ◽  
pp. A132
Author(s):  
Robert C Barber ◽  
Fernando A Rivera-Chavez ◽  
Herbert T Wheeler ◽  
Gina M Whitney ◽  
Dixie L Peters-Hybki ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9626
Author(s):  
Adolfo I. Ruiz-Ballesteros ◽  
Mónica R. Meza-Meza ◽  
Barbara Vizmanos-Lamotte ◽  
Isela Parra-Rojas ◽  
Ulises de la Cruz-Mosso

A high prevalence of vitamin D (calcidiol) serum deficiency has been described in several autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis (AR), and systemic lupus erythematosus (SLE). Vitamin D is a potent immunonutrient that through its main metabolite calcitriol, regulates the immunomodulation of macrophages, dendritic cells, T and B lymphocytes, which express the vitamin D receptor (VDR), and they produce and respond to calcitriol. Genetic association studies have shown that up to 65% of vitamin D serum variance may be explained due to genetic background. The 90% of genetic variability takes place in the form of single nucleotide polymorphisms (SNPs), and SNPs in genes related to vitamin D metabolism have been linked to influence the calcidiol serum levels, such as in the vitamin D binding protein (VDBP; rs2282679 GC), 25-hydroxylase (rs10751657 CYP2R1), 1α-hydroxylase (rs10877012, CYP27B1) and the vitamin D receptor (FokI (rs2228570), BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) VDR). Therefore, the aim of this comprehensive literature review was to discuss the current findings of functional SNPs in GC, CYP2R1, CYP27B1, and VDR associated to genetic risk, and the most common clinical features of MS, RA, and SLE.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaonan Ding ◽  
Yan Mei ◽  
Zhi Mao ◽  
Lingling Long ◽  
Qiuxia Han ◽  
...  

IgA nephropathy is the most prevalent primary glomerulonephritis worldwide, with identical immunopathological characteristics caused by multiple etiologies as well as influenced by geographical and ethnical factors. To elucidate the role of immunologic and inflammatory mechanisms in the susceptibility to IgA nephropathy, we explored single nucleotide polymorphisms of related molecules in the immune pathways. We searched the PubMed database for studies that involved all gene variants of molecules in the 20 immunologic and inflammatory pathways selected from the Kyoto Encyclopedia of Genes and Genomes database. The odds ratios with their corresponding 95% confidence intervals in six genetic models (allele model, dominant model, homozygote model, heterozygote model, overdominant model, and recessive model) were summarized using fixed or random effect models. Subgroup analysis was conducted based on different ethnicities with generalized odds ratios. Heterogeneity was evaluated using the Q and I2 tests. Begg’s funnel plot and Egger’s linear regression test were used to evaluating possible publication bias among the included studies, and sensitivity analysis was used to test the stability of the overall results. A total of 45 studies met our selection criteria and eight related genetic association studies were retrieved, including 320 single-nucleotide polymorphisms from 20 candidate pathways, ranging from 2000 to 2021. A total of 28,994 healthy people versus 20,600 IgA nephropathy patients were enrolled. Upon meta-analyzed results that TGFB1 (rs1800469, rs1982073, rs1800471), IL-1B (rs1143627), IL-18 (rs1946518), and TLR1 (rs5743557) showed effect with or without ethnicity difference. And 10 variants presented stable and robust related to IgA nephropathy. This research showed that genetic variants are related to the immunologic and inflammatory effects of IgA nephropathy pathogenesis. The meta-analysis results supported the previous researches, and may help deepen the understanding of pathogenesis and explore new targets for IgA nephropathy-specific immunotherapy.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1530
Author(s):  
Byung-Woo Yoon ◽  
Hyun-Tae Shin ◽  
Je-Hyun Seo

The prevalence of vitamin D deficiency varies from 20.8% to 61.6% among populations of different ethnicities, suggesting the existence of a genetic component. The purpose of this study was to provide insights into the genetic causes of vitamin D concentration differences among individuals of diverse ancestry. We collected 320 single-nucleotide polymorphisms (SNPs) associated with vitamin D concentrations from a genome-wide association studies catalog. Their population-level allele frequencies were derived based on the 1000 Genomes Project and Korean Reference Genome Database. We used Fisher’s exact tests to assess the significance of the enrichment or depletion of the effect allele at a given SNP in the database. In addition, we calculated the SNP-based genetic risk score (GRS) and performed correlation analysis with vitamin D concentration that included latitude. European, American, and South Asian populations showed similar heatmap patterns, whereas African, East Asian, and Korean populations had distinct ones. The GRS calculated from allele frequencies of vitamin D concentration was highest among Europeans, followed by East Asians and Africans. In addition, the difference in vitamin D concentration was highly correlated with genetic factors rather than latitude effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Zacharioudaki ◽  
Ippokratis Messaritakis ◽  
Emmanouil Galanakis

AbstractThe role of vitamin D in innate and adaptive immunity is recently under investigation. In this study we explored the potential association of genetic variances in vitamin D pathway and infections in infancy. Τhis prospective case–control study included infants 0–24 months with infection and age-matched controls. The single nucleotide polymorphisms of vitamin D receptor (VDR) gene (BsmI, FokI, ApaI, TaqI), vitamin D binding protein (VDBP) (Gc gene, rs7041, rs4588) and CYP27B1 (rs10877012) were genotyped by polymerase chain reaction-restriction fragment length polymorphism. In total 132 infants were enrolled, of whom 40 with bacterial and 52 with viral infection, and 40 healthy controls. As compared to controls, ΤaqI was more frequent in infants with viral infection compared to controls (p = 0.03, OR 1.96, 95% CI 1.1–3.58). Moreover, Gc1F was more frequent in the control group compared to infants with viral infection (p = 0.007, OR 2.7, 95% CI 1.3–5.6). No significant differences were found regarding the genetic profile for VDR and VDBP in infants with bacterial infection compared to the controls and also regarding CYP27B1 (rs10877012) between the studied groups. Genotypic differences suggest that vitamin D pathway might be associated with the host immune response against viral infections in infancy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


Sign in / Sign up

Export Citation Format

Share Document