Theory and experiment on establishing the stability boundaries of a one-degree-of-freedom system under two high-frequency parametric excitation inputs

2006 ◽  
Vol 297 (3-5) ◽  
pp. 962-980 ◽  
Author(s):  
R.J. Yatawara ◽  
R.D. Neilson ◽  
A.D.S. Barr
2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Ashu Sharma ◽  
S. C. Sinha

In most parametrically excited systems, stability boundaries cross each other at several points to form closed unstable subregions commonly known as “instability pockets.” The first aspect of this study explores some general characteristics of these instability pockets and their structural modifications in the parametric space as damping is induced in the system. Second, the possible destabilization of undamped systems due to addition of damping in parametrically excited systems has been investigated. The study is restricted to single degree-of-freedom systems that can be modeled by Hill and quasi-periodic (QP) Hill equations. Three typical cases of Hill equation, e.g., Mathieu, Meissner, and three-frequency Hill equations, are analyzed. State transition matrices of these equations are computed symbolically/analytically over a wide range of system parameters and instability pockets are observed in the stability diagrams of Meissner, three-frequency Hill, and QP Hill equations. Locations of the intersections of stability boundaries (commonly known as coexistence points) are determined using the property that two linearly independent solutions coexist at these intersections. For Meissner equation, with a square wave coefficient, analytical expressions are constructed to compute the number and locations of the instability pockets. In the second part of the study, the symbolic/analytic forms of state transition matrices are used to compute the minimum values of damping coefficients required for instability pockets to vanish from the parametric space. The phenomenon of destabilization due to damping, previously observed in systems with two degrees-of-freedom or higher, is also demonstrated in systems with one degree-of-freedom.


Author(s):  
A. H. Nayfeh ◽  
C. Chin ◽  
D. T. Mook

Abstract The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation are analyzed. The results are applied to the flutter of a simply-supported panel in a supersonic airstream.


1991 ◽  
Vol 113 (2) ◽  
pp. 336-338 ◽  
Author(s):  
J. Lieh ◽  
I. Haque

This paper presents a study of the parametrically excited behavior of passenger and freight vehicles on tangent track due to harmonic variations in conicity using linear models. The effect of primary and secondary stiffnesses on parametric excitation is also studied. Floquet theory is used to find the stability boundaries. The results show that wavelengths associated with conicity variation that are in the vicinity of half the kinematic wavelengths of the vehicles can lead to significant reductions in critical speeds. Results also show that the primary and warp stiffnesses can affect the severity of principal parametric resonance depending on the vehicle models and magnitude of stiffnesses chosen.


Author(s):  
Yongqiang He ◽  
Lewei Zhao

This paper develops a time-varying model for battery tabs based on the parametric excitation of Euler-Bernoulli beams. The instability caused by combination resonance under a high-frequency longitudinal load is considered. A Galerkin procedure is used to discretize the time-dependent problem into the Mathieu equation. The critical axial load is obtained from the transition curve of combination resonance. The effectiveness of the stability analysis was verified by numerical simulations involving longitudinal and bending loads.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


Author(s):  
Zakarya Omar ◽  
Xingsong Wang ◽  
Khalid Hussain ◽  
Mingxing Yang

AbstractThe typical power-assisted hip exoskeleton utilizes rotary electrohydraulic actuator to carry out strength augmentation required by many tasks such as running, lifting loads and climbing up. Nevertheless, it is difficult to precisely control it due to the inherent nonlinearity and the large dead time occurring in the output. The presence of large dead time fires undesired fluctuation in the system output. Furthermore, the risk of damaging the mechanical parts of the actuator increases as these high-frequency underdamped oscillations surpass the natural frequency of the system. In addition, system closed-loop performance is degraded and the stability of the system is unenviably affected. In this work, a Sliding Mode Controller enhanced by a Smith predictor (SMC-SP) scheme that counts for the output delay and the inherent parameter nonlinearities is presented. SMC is utilized for its robustness against the uncertainty and nonlinearity of the servo system parameters whereas the Smith predictor alleviates the dead time of the system’s states. Experimental results show smoother response of the proposed scheme regardless of the amount of the existing dead time. The response trajectories of the proposed SMC-SP versus other control methods were compared for a different predefined dead time.


2021 ◽  
Vol 11 (11) ◽  
pp. 4833
Author(s):  
Afroja Akter ◽  
Md. Jahedul Islam ◽  
Javid Atai

We study the stability characteristics of zero-velocity gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity. The model supports two disjointed families of gap solitons (Type 1 and Type 2). Additionally, asymmetric and symmetric solitons exist in both Type 1 and Type 2 families. A comprehensive numerical stability analysis is performed to analyze the stability of solitons. It is found that dispersive reflectivity improves the stability of both types of solitons. Nontrivial stability boundaries have been identified within the bandgap for each family of solitons. The effects and interplay of dispersive reflectivity and the coupling coefficient on the stability regions are also analyzed.


2002 ◽  
Vol 452 ◽  
pp. 163-187 ◽  
Author(s):  
C. L. BURCHAM ◽  
D. A. SAVILLE

A liquid bridge is a column of liquid, pinned at each end. Here we analyse the stability of a bridge pinned between planar electrodes held at different potentials and surrounded by a non-conducting, dielectric gas. In the absence of electric fields, surface tension destabilizes bridges with aspect ratios (length/diameter) greater than π. Here we describe how electrical forces counteract surface tension, using a linearized model. When the liquid is treated as an Ohmic conductor, the specific conductivity level is irrelevant and only the dielectric properties of the bridge and the surrounding gas are involved. Fourier series and a biharmonic, biorthogonal set of Papkovich–Fadle functions are used to formulate an eigenvalue problem. Numerical solutions disclose that the most unstable axisymmetric deformation is antisymmetric with respect to the bridge’s midplane. It is shown that whilst a bridge whose length exceeds its circumference may be unstable, a sufficiently strong axial field provides stability if the dielectric constant of the bridge exceeds that of the surrounding fluid. Conversely, a field destabilizes a bridge whose dielectric constant is lower than that of its surroundings, even when its aspect ratio is less than π. Bridge behaviour is sensitive to the presence of conduction along the surface and much higher fields are required for stability when surface transport is present. The theoretical results are compared with experimental work (Burcham & Saville 2000) that demonstrated how a field stabilizes an otherwise unstable configuration. According to the experiments, the bridge undergoes two asymmetric transitions (cylinder-to-amphora and pinch-off) as the field is reduced. Agreement between theory and experiment for the field strength at the pinch-off transition is excellent, but less so for the change from cylinder to amphora. Using surface conductivity as an adjustable parameter brings theory and experiment into agreement.


1993 ◽  
Vol 03 (02) ◽  
pp. 645-668 ◽  
Author(s):  
A. N. SHARKOVSKY ◽  
YU. MAISTRENKO ◽  
PH. DEREGEL ◽  
L. O. CHUA

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig. 1) obtained by replacing the left portion of the circuit composed of the capacitance C2 and the inductance L by a lossless transmission line as shown in Fig. 2. As we shall see, if the remaining capacitance C1 is equal to zero, the dynamics of this so-called time-delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation. After deriving the corresponding 1-D map, it will be possible to determine without any approximation the analytical equation of the stability boundaries of cycles of every period n. Since the stability region is nonempty for each n, this proves rigorously that the time-delayed Chua's circuit exhibits the "period-adding" phenomenon where every two consecutive cycles are separated by a chaotic region.


Sign in / Sign up

Export Citation Format

Share Document