scholarly journals Gene phylogenies and protein–protein interactions: possible artifacts resulting from shared protein interaction partners

2004 ◽  
Vol 231 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Paulo R.A. Campos ◽  
Viviane M. de Oliveira ◽  
Günter P. Wagner ◽  
Peter F. Stadler
Author(s):  
Yu-Miao Zhang ◽  
Jun Wang ◽  
Tao Wu

In this study, the Agrobacterium infection medium, infection duration, detergent, and cell density were optimized. The sorghum-based infection medium (SbIM), 10-20 min infection time, addition of 0.01% Silwet L-77, and Agrobacterium optical density at 600 nm (OD600), improved the competence of onion epidermal cells to support Agrobacterium infection at >90% efficiency. Cyclin-dependent kinase D-2 (CDKD-2) and cytochrome c-type biogenesis protein (CYCH), protein-protein interactions were localized. The optimized procedure is a quick and efficient system for examining protein subcellular localization and protein-protein interaction.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2021 ◽  
Author(s):  
Laia Miret Casals ◽  
Willem Vannecke ◽  
Kurt Hoogewijs ◽  
Gianluca Arauz ◽  
Marina Gay ◽  
...  

We describe furan as a triggerable ‘warhead’ for site-specific cross-linking using the actin and thymosin β4 (Tβ4)-complex as model of a weak and dynamic protein-protein interaction with known 3D structure...


Author(s):  
Oruganty Krishnadev ◽  
Shveta Bisht ◽  
Narayanaswamy Srinivasan

The genomes of many human pathogens have been sequenced but the protein-protein interactions across a pathogen and human are still poorly understood. The authors apply a simple homology-based method to predict protein-protein interactions between human host and two mycobacterial organisms viz., M.tuberculosis and M.leprae. They focused on secreted proteins of pathogens and cellular membrane proteins to restrict to uncovering biologically significant and feasible interactions. Predicted interactions include five mycobacterial proteins of yet unknown function, thus suggesting a role for these proteins in pathogenesis. The authors predict interaction partners for secreted mycobacterial antigens such as MPT70, serine proteases and other proteins interacting with human proteins, such as toll-like receptors, ras signalling proteins and immune maintenance proteins, that are implicated in pathogenesis. These results suggest that the list of predicted interactions is suitable for further analysis and forms a useful step in the understanding of pathogenesis of these mycobacterial organisms.


2020 ◽  
Vol 19 (7) ◽  
pp. 1070-1075 ◽  
Author(s):  
Katrina Meyer ◽  
Matthias Selbach

Protein-protein interactions are often mediated by short linear motifs (SLiMs) that are located in intrinsically disordered regions (IDRs) of proteins. Interactions mediated by SLiMs are notoriously difficult to study, and many functionally relevant interactions likely remain to be uncovered. Recently, pull-downs with synthetic peptides in combination with quantitative mass spectrometry emerged as a powerful screening approach to study protein-protein interactions mediated by SLiMs. Specifically, arrays of synthetic peptides immobilized on cellulose membranes provide a scalable means to identify the interaction partners of many peptides in parallel. In this minireview we briefly highlight the relevance of SLiMs for protein-protein interactions, outline existing screening technologies, discuss unique advantages of peptide-based interaction screens and provide practical suggestions for setting up such peptide-based screens.


2020 ◽  
Vol 16 ◽  
pp. 2505-2522
Author(s):  
Peter Bayer ◽  
Anja Matena ◽  
Christine Beuck

As one of the few analytical methods that offer atomic resolution, NMR spectroscopy is a valuable tool to study the interaction of proteins with their interaction partners, both biomolecules and synthetic ligands. In recent years, the focus in chemistry has kept expanding from targeting small binding pockets in proteins to recognizing patches on protein surfaces, mostly via supramolecular chemistry, with the goal to modulate protein–protein interactions. Here we present NMR methods that have been applied to characterize these molecular interactions and discuss the challenges of this endeavor.


2008 ◽  
Vol 82 (10) ◽  
pp. 4742-4750 ◽  
Author(s):  
Ramona Rozen ◽  
Narayanan Sathish ◽  
Yong Li ◽  
Yan Yuan

ABSTRACT Herpesvirus virions are highly organized structures built through specific protein-protein interactions. Thus, revelation of the protein interactions among virion proteins will shed light on the processes and the mechanisms of virion formation. Recently, we identified 24 virion proteins of Kaposi's sarcoma-associated herpesvirus (KSHV), using a proteomic approach (F. X. Zhu et al., J. Virol. 79:800-811, 2005). In the current study, a comprehensive analysis of protein-protein interaction between KSHV virion proteins was carried out using yeast two-hybrid (Y2H) and coimmunoprecipitation (co-IP) approaches. Every pairwise combination between KSHV tegument and capsid proteins, between tegument and envelope proteins, and among tegument proteins was tested for possible binary interaction. Thirty-seven protein-protein interactions were identified by both Y2H and co-IP analyses. The results revealed interactions between tegument and capsid proteins such as that of open reading frame 64 (ORF64) with ORF25 (major capsid protein [MCP]), ORF62 (triplex-1 [TRI-1]), and ORF26 (TRI-2). Many interactions were detected among the tegument proteins. ORF64 was found to interact with several tegument proteins including ORF11, ORF21, ORF33, ORF45, ORF63, ORF75, and ORF64 itself, suggesting that ORF64 may serve as a hub protein and play a role in recruiting tegument proteins during tegumentation and virion assembly. Our investigation also revealed redundant interactions between tegument proteins and envelope glycoproteins. These interactions are believed to contribute to final envelopment in virion assembly. Overall, this study allows us to establish a virion-wide protein interaction map, which provides insight into the architecture of the KSHV virion and sets up a foundation for exploring the functions of these proteins in viral particle assembly.


2019 ◽  
Vol 13 (S1) ◽  
Author(s):  
Qingqing Li ◽  
Zhihao Yang ◽  
Zhehuan Zhao ◽  
Ling Luo ◽  
Zhiheng Li ◽  
...  

Abstract Background Protein–protein interaction (PPI) information extraction from biomedical literature helps unveil the molecular mechanisms of biological processes. Especially, the PPIs associated with human malignant neoplasms can unveil the biology behind these neoplasms. However, such PPI database is not currently available. Results In this work, a database of protein–protein interactions associated with 171 kinds of human malignant neoplasms named HMNPPID is constructed. In addition, a visualization program, named VisualPPI, is provided to facilitate the analysis of the PPI network for a specific neoplasm. Conclusions HMNPPID can hopefully become an important resource for the research on PPIs of human malignant neoplasms since it provides readily available data for healthcare professionals. Thus, they do not need to dig into a large amount of biomedical literatures any more, which may accelerate the researches on the PPIs of malignant neoplasms.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 158 ◽  
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

Post-translational regulation of sucrose transporters represents one possibility to adapt transporter activity in a very short time frame. This can occur either via phosphorylation/dephosphorylation, oligomerization, protein–protein interactions, endocytosis/exocytosis, or degradation. It is also known that StSUT1 can change its compartmentalization at the plasma membrane and concentrate in membrane microdomains in response to changing redox conditions. A systematic screen for protein–protein-interactions of plant sucrose transporters revealed that the interactome of all three known sucrose transporters from the Solanaceous species Solanum tuberosum and Solanum lycopersicum represents a specific subset of interaction partners, suggesting different functions for the three different sucrose transporters. Here, we focus on factors that affect the subcellular distribution of the transporters. It was already known that sucrose transporters are able to form homo- as well as heterodimers. Here, we reveal the consequences of homo- and heterodimer formation and the fact that the responses of individual sucrose transporters will respond differently. Sucrose transporter SlSUT2 is mainly found in intracellular vesicles and several of its interaction partners are involved in vesicle traffic and subcellular targeting. The impact of interaction partners such as SNARE/VAMP proteins on the localization of SlSUT2 protein will be investigated, as well as the impact of inhibitors, excess of substrate, or divalent cations which are known to inhibit SUT1-mediated sucrose transport in yeast cells. Thereby we are able to identify factors regulating sucrose transporter activity via a change of their subcellular distribution.


Sign in / Sign up

Export Citation Format

Share Document