scholarly journals Vitamin D deficiency after allogeneic hematopoietic cell transplantation promotes T-cell activation and is inversely associated with an EZH2-ID3 signature

Author(s):  
Rodney Macedo ◽  
Chloé Pasin ◽  
Alex Ganetsky ◽  
David Harle ◽  
Ximi K. Wang ◽  
...  
2016 ◽  
Vol 113 (48) ◽  
pp. 13827-13832 ◽  
Author(s):  
Nora Mirza ◽  
Manfred Zierhut ◽  
Andreas Korn ◽  
Antje Bornemann ◽  
Wichard Vogel ◽  
...  

Graft-versus-host disease (GVHD) represents the major nonrelapse complication of allogeneic hematopoietic cell transplantation. Although rare, the CNS and the eye can be affected. In this study, manifestation in the retina as part of the CNS and T-cell epitopes recognized by the allogeneic T cells were evaluated. In 2 of 6 patients with posttransplantation retina diseases and 6 of 22 patients without ocular symptoms, antigen-specific T-cell responses against retina-specific epitopes were observed. No genetic differences between donor and recipient could be identified indicating T-cell activation against self-antigens (graft versus self). Transplantation of a preexisting immunity and cross-reactivity with ubiquitous epitopes was excluded in family donors and healthy individuals. In summary, an immunological reaction against retina cells represents a mechanism of graft-versus-host interaction following hematopoietic cell transplantation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5236-5236
Author(s):  
Guenther Richter ◽  
Karin Hanewinkel ◽  
Andreas Mollweide ◽  
Stefan Burdach

Abstract The IL2R is a heterotrimeric receptor consisting of the alpha-chain (CD25) and the two signal transducing beta-, gamma-chains. CD25 monoclonal antibody (e.g. daclizumab) binding to the α-chain, blocks high affinity IL2 binding thereby preventing complete T cell activation. This opportunity to hinder T cell triggering is of ample importance in transplantation medicine and the treatment of autoimmune disease; e.g. for the prevention of an acute graft versus host reaction during allogeneic hematopoietic cell transplantation. However, gene-targeting experiments revealed, that CD25 has an important role in mediating activation induced cell death (AICD) thereby maintaining T cell homeostasis. Thus, CD25 antibodies may not only block T cell activation but may also prevent AICD attributing a dual function to IL2, which has been described by the term AICD paradoxon. The molecular mechanisms of AICD remain to be elucidated. In this study, the modulation of the genomic expression profile of human peripheral blood mononuclear cells (PBMC) with therapeutic concentrations of CD25 mAb was investigated with the aim to identify genes that are involved in T cell activation or in AICD. PBMC were stimulated with OKT3 together with recombinant IL2 in the absence or presence of 30 microgram/ml Daclizumab. Cells were incubated for 16 hrs, RNA extracted and subjected to microarray analysis on U133A gene chips (Affymetrix). Gene chip profile revealed up-regulation of 60 genes and down regulation of 36 genes respectively, by Daclizumab. Anti-CD25 treatment inhibitied cytokine genes typically expressed during T cell activation including CD40L, IL9, TNF-alpha and IFN-gamma as previously shown (e.g. Burdach et al., JCI). Surprisingly, daclizumab also blocked expression of several genes important for susceptibility to apoptosis, such as DR6. In addition, daclizumab reversed IL2-mediated repression of anti-apoptotic genes, such as TOSO. Microarray analysis of these apoptosis related genes was confirmed by RT-PCR and functional assays. In conclusion, CD25-mediated induction of pro-apoptotic as well as repression of anti-apoptotic gene clusters should be considered for future drug development of CD25-antibodies in the clinical arena: these apoptosis related gene products may represent new pharmacologic targets in hematopoietic cell transplantation as well as in the treatment of autoimmune diseases.


2016 ◽  
Vol 101 (2) ◽  
pp. 533-538 ◽  
Author(s):  
Gauree Gupta Konijeti ◽  
Pankaj Arora ◽  
Matthew R. Boylan ◽  
Yanna Song ◽  
Shi Huang ◽  
...  

Abstract Context: Although studies have linked vitamin D deficiency with immune-mediated diseases, data demonstrating a direct effect on T-cell function are sparse. Objective: Our objective was to determine whether oral vitamin D3 influences T-cell activation in humans with vitamin D deficiency. Design: This was a single-center ancillary study within Vitamin D Therapy in Individuals at High Risk of Hypertension, a double-blind, multicenter, randomized controlled trial. Setting: This study was undertaken in a single academic medical center. Participants: Adults with vitamin D deficiency and untreated pre- or early stage I hypertension were included. Intervention: In Vitamin D Therapy in Individuals at High Risk of Hypertension, participants were randomized to either low- (400 IU daily) or high- (4000 IU daily) dose oral vitamin D3 for 6 months. In this ancillary study of 38 patients, we measured CD4+ T-cell activation estimated by intracellular ATP release after stimulation of whole blood with plant lectin phytohemagglutinin collected at baseline (pretreatment) and 2-month follow-up. Main Outcome Measure: Determining whether ATP level changes were significantly different between treatment groups was the main outcome measure. Results: Treatment with 4000 IU of vitamin D3 decreased intracellular CD4+ ATP release by 95.5 ng/ml (interquartile range, −219.5 to 105.8). In contrast, 400 IU of vitamin D3 decreased intracellular CD4+ ATP release by 0.5 ng/ml (interquartile range, −69.2 to 148.5). In a proportional odds model, high-dose vitamin D3 was more likely than low-dose vitamin D3 to decrease CD4+ ATP release (odds ratio, 3.43; 95% confidence interval, 1.06–1.11). Conclusions: In this ancillary study of a randomized controlled trial, we found that high-dose vitamin D3 significantly reduced CD4+ T-cell activation compared to low-dose vitamin D3, providing human evidence that vitamin D can influence cell-mediated immunity.


Author(s):  
Derek J Hanson ◽  
Hu Xie ◽  
Danielle M Zerr ◽  
Wendy M Leisenring ◽  
Keith R Jerome ◽  
...  

Abstract We sought to determine whether donor-derived human herpesvirus (HHV) 6B–specific CD4+ T-cell abundance is correlated with HHV-6B detection after allogeneic hematopoietic cell transplantation. We identified 33 patients who received HLA-matched, non–T-cell–depleted, myeloablative allogeneic hematopoietic cell transplantation and underwent weekly plasma polymerase chain reaction testing for HHV-6B for 100 days thereafter. We tested donor peripheral blood mononuclear cells for HHV-6B–specific CD4+ T cells. Patients with HHV-6B detection above the median peak viral load (200 copies/mL) received approximately 10-fold fewer donor-derived total or HHV-6B–specific CD4+ T cells than those with peak HHV-6B detection at ≤200 copies/mL or with no HHV-6B detection. These data suggest the importance of donor-derived immunity for controlling HHV-6B reactivation.


Sign in / Sign up

Export Citation Format

Share Document