Cyclodextrin functionalized cellulose nanofiber composites for the faster adsorption of toluene from aqueous solution

2017 ◽  
Vol 70 ◽  
pp. 352-358 ◽  
Author(s):  
Guohao Yuan ◽  
Mayakrishnan Prabakaran ◽  
Sun Qilong ◽  
Jung Soon Lee ◽  
Ill-Min Chung ◽  
...  
2015 ◽  
Vol 31 (11) ◽  
pp. 1111-1114 ◽  
Author(s):  
Mikito YASUZAWA ◽  
Yuya OMURA ◽  
Kentaro HIURA ◽  
Jiang LI ◽  
Yusuke FUCHIWAKI ◽  
...  

2017 ◽  
Vol 900 ◽  
pp. 146-149
Author(s):  
Lu Yang Song ◽  
Kotaro Takahashi ◽  
Takeshi Higuchi ◽  
Tadahiro Aita

In this work, photoluminescent properties of Ru (bpy)32+ incorporated in cellulose nanofiber (CNF) film was investigated by comparing with those in polyvinyl alcohol (PVA) and polyacrylic acid (PAA) films. In the polymer films, the luminescence intensity of Ru (bpy)32+ was high and λmax of luminescence spectra was blue-shifted compared with those in aqueous solution. The high luminescence intensity was also observed in cellulose nanofiber (CNF) films but the spectrum was red-shifted. Luminescence decay measurement showed that the decays in polymer films were exponential and the lifetimes were far longer than that in aqueous solution. On the other hand, in CNF films, the decays were composed of fast and slow ones. The luminescence properties of Ru (bpy)32+ in CNF films were discussed based on the stabilization of excited state and the dispersibility of Ru (bpy)32+ in the films.


Author(s):  
Hoang-Linh Nguyen ◽  
Zahid Hanif ◽  
Seul-A. Park ◽  
Bong Gill Choi ◽  
Thang Hong Tran ◽  
...  

Herein, we introduce a boron nitride nanosheet (BNNS)-reinforced cellulose nanofiber (CNF) film as a sustainable oxygen barrier film that can potentially be applied in food packaging. Most of commodity plastics are oxygen-permeable. CNF exhibits an ideal oxygen transmittance rate (OTR) of <1 cc/m2/day in highly controlled conditions. A CNF film typically fabricated by the air drying of a CNF aqueous solution reveals an OTR of 19.08 cc/m2/day. The addition of 0-5 wt% BNNS to the CNF dispersion before drying results in a composite film with highly improved OTR, 4.7 cc/m2/day, which is sufficient for meat and cheese packaging. BNNS as a 2D nanomaterial increases the pathway of oxygen gas and reduces the chances of pin-hole formation during film fabrication involving water drying. In addition, BNNS improves the mechanical properties of the CNF films (Young’s modulus and tensile strength) without significant elongation reductions, probably due to the good miscibility of CNF and BNNS in the aqueous solution. BNNS addition also produces negligible color change, which is important for film aesthetics. An in vitro cell experiment was performed to reveal the low cytotoxicity of the CNF/BNNS composite. This composite film has great potential as a sustainable high-performance food packaging material.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Aina Mardhia Khalid ◽  
Md. Sohrab Hossain ◽  
Norli Ismail ◽  
Nor Afifah Khalil ◽  
Venugopal Balakrishnan ◽  
...  

In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.


Author(s):  
G. G. Cocks ◽  
C. E. Cluthe

The freeze etching technique is potentially useful for examining dilute solutions or suspensions of macromolecular materials. Quick freezing of aqueous solutions in Freon or propane at or near liquid nitrogen temperature produces relatively large ice crystals and these crystals may damage the structures to be examined. Cryoprotective agents may reduce damage to the specimem, hut their use often results in the formation of a different set of specimem artifacts.In a study of the structure of polyethylene oxide gels glycerol and sucrose were used as cryoprotective agents. The experiments reported here show some of the structures which can appear when these cryoprotective agents are used.Figure 1 shows a fractured surface of a frozen 25% aqueous solution of sucrose. The branches of dendritic ice crystals surrounded hy ice-sucrose eutectic can be seen. When this fractured surface is etched the ice in the dendrites sublimes giving the type of structure shown in Figure 2. The ice-sucrose eutectic etches much more slowly. It is the smooth continuous structural constituent surrounding the branches of the dendrites.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


Author(s):  
Eduardo A. Kamenetzky ◽  
David A. Ley

The microstructure of polyacrylonitrile (PAN) beads for affinity chromatography bioseparations was studied by TEM of stained ultramicrotomed thin-sections. Microstructural aspects such as overall pore size distribution, the distribution of pores within the beads, and surface coverage of functionalized beads affect performance properties. Stereological methods are used to quantify the internal structure of these chromatographic supports. Details of the process for making the PAN beads are given elsewhere. TEM specimens were obtained by vacuum impregnation with a low-viscosity epoxy and sectioning with a diamond knife. The beads can be observed unstained. However, different surface functionalities can be made evident by selective staining. Amide surface coverage was studied by staining in vapor of a 0.5.% RuO4 aqueous solution for 1 h. RuO4 does not stain PAN but stains, amongst many others, polymers containing an amide moiety.


Sign in / Sign up

Export Citation Format

Share Document