Adsorption and anticorrosion mechanism of glucose-based functionalized carbon dots for copper in neutral solution

Author(s):  
Shan Wan ◽  
Huikai Chen ◽  
Bokai Liao ◽  
Xingpeng Guo
Keyword(s):  
1978 ◽  
Vol 17 (06) ◽  
pp. 238-248
Author(s):  
H. Beekhuis ◽  
M.A.P.C. van de Poll ◽  
A. Versluis ◽  
H. Jurjens ◽  
M.G. Woldring ◽  
...  

Investigations with bleomycin labelled with radionuclides other than 57Co in patients with cancer and in tumor-bearing animals are described. In patients 57Co-bleo appears to be a better tumor-seeking radiopharmaceutical than 111In-bleo, 99mTc-bleo or 197Hg-bleo. This can be explained by a higher stability in vivo and a better tumor-seeking property of 57Co-bleo and less disturbing activity in the cardiac pool and in bone and other normal tissues when assessing the scintigram.Results with 111In-bleo labelled in acidic solution are not essentially different from those with 111In-bleo labelled in neutral solution.Results of 197Hg-bleo are almost identical with those of 197HgCl2 regarding the tumor-seeking effect as well as the distribution in normal tissues and organs. Probably the complex of 197Hg to bleomycin is not stable in vivo. The superiority of 57Co-bleo over 99mTc-bleo, 197Hg-bleo and also over 67Cu-bleo is confirmed by experiments on tumor bearing animals.We may conclude that the indication for use of bleomycin as a tumor-seeking pharmaceutical labelled with 111In, 99mTc, 197Hg or 67Cu seems to be very limited.


Author(s):  
Khalilalrahman Dehvari ◽  
Sheng-Hui Chiu ◽  
Jin-Sheng Lin ◽  
Wubshet Mekonnen Girm ◽  
Yong-Chien Ling ◽  
...  

2020 ◽  
Vol 25 (46) ◽  
pp. 4848-4860 ◽  
Author(s):  
Anisha Anand ◽  
Gopinathan Manavalan ◽  
Ranju Prasad Mandal ◽  
Huan-Tsung Chang ◽  
Yi-Ru Chiou ◽  
...  

: The prevention and treatment of various infections caused by microbes through antibiotics are becoming less effective due to antimicrobial resistance. Researches are focused on antimicrobial nanomaterials to inhibit bacterial growth and destroy the cells, to replace conventional antibiotics. Recently, carbon dots (C-Dots) become attractive candidates for a wide range of applications, including the detection and treatment of pathogens. In addition to low toxicity, ease of synthesis and functionalization, and high biocompatibility, C-Dots show excellent optical properties such as multi-emission, high brightness, and photostability. C-Dots have shown great potential in various fields, such as biosensing, nanomedicine, photo-catalysis, and bioimaging. This review focuses on the origin and synthesis of various C-Dots with special emphasis on bacterial detection, the antibacterial effect of CDots, and their mechanism.


2018 ◽  
Vol 15 (1) ◽  
pp. 47-55
Author(s):  
Xuebing Li ◽  
Haifen Yang ◽  
Ning Wang ◽  
Tijian Sun ◽  
Wei Bian ◽  
...  

Background: Morin has many pharmacological functions including antioxidant, anticancer, anti-inflammatory, and antibacterial effects. It is commonly used in the treatment of antiviral infection, gastropathy, coronary heart disease and hepatitis B in clinic. However, researches have shown that morin is likely to show prooxidative effects on the cells when the amount of treatment is at high dose, leading to the decrease of intracellular ATP levels and the increase of necrosis process. Therefore, it is necessary to determine the concentration of morin in biologic samples. Method: Novel water-soluble and green nitrogen and sulfur co-doped carbon dots (NSCDs) were prepared by a microwave heating process with citric acid and L-cysteine. The fluorescence spectra were collected at an excitation wavelength of 350 nm when solutions of NSCDs were mixed with various concentrations of morin. Results: The as-prepared NSCDs were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The fluorescence intensity of NSCDs decreased significantly with the increase of morin concentration. The fluorescence intensity of NSCDs displayed a linear response to morin in the concentration 0.10-30 μM with a low detection limit of 56 nM. The proposed fluorescent probe was applied to analysis of morin in human body fluids with recoveries of 98.0-102%. Conclusion: NSCDs were prepared by a microwave heating process. The present analytical method is sensitive to morin. The quenching process between NSCDs and morin is attributed to the static quenching. In addition, the cellular toxicity on HeLa cells indicated that the as-prepared NSCDs fluorescent probe does not show obvious cytotoxicity in cell imaging. Our proposed method possibly opens up a rapid and nontoxic way for preparing heteroatom doped carbon dots with a broad application prospect.


2020 ◽  
Vol 16 ◽  
Author(s):  
Pan Zhang ◽  
Shun-Sheng Zhao ◽  
JiaJia Wang ◽  
Xiang Rong Liu

Background: In recent years, environmental pollution and heavy metal pollution caused by rapid urbanization and industrialization have become increasingly serious. Among them, mercury (II) ion (Hg2+) is one of the highly toxic heavy metal ions, and its pollution comes from various natural resources and human activities. Therefore, people attach great importance to the development of analytical methods for effective analysis and sensitive detection of Hg2+ . Objective: Using grape skin as a green and environmental friendly carbon source, to synthesize fluorescent carbon dots, and try to apply them to the detect the concentration of Hg2+ in water. Method: Using "Hutai No. 8" grape skin as carbon source, fluorescent carbon dots were synthesized by one-step hydrothermal method. Structure and fluorescent properties of the carbon dots were tested using TEM, XPS, XRD and other characterization instruments, and their utilization on detection of mercury ions in the actual water samples was explored. Results: The CDs had a particle size of about 4.8 nm and a spherical shape. There are N-H, C-N, C=O and other functional groups on the surface. It was found that Hg2+ has obvious fluorescence quenching effect on CDs, and thus CDs fluorescence quenching method to detect the concentration Hg2+ was established, and the detection limit is 3.7 μM, which could be applied to test the concentration of Hg2+ in water samples. Conclusion: Using grape skin as carbon source, fluorescent carbon dots were successfully synthesized by hydrothermal method. Carbon dots were used to detect mercury ions in water, and a method for detecting mercury ions in actual water samples was established.


2020 ◽  
Vol 231 (4) ◽  
pp. S180
Author(s):  
Athina L. Yoham ◽  
Carolina M. Matta ◽  
Sabrin B. Safar ◽  
Meghana Sankaran ◽  
Anastasiia Kaplina ◽  
...  

2019 ◽  
Vol 411 (8) ◽  
pp. 1647-1657 ◽  
Author(s):  
Pengli Zuo ◽  
Jianhua Liu ◽  
Hongna Guo ◽  
Chenghong Wang ◽  
Hongqian Liu ◽  
...  

2020 ◽  
Vol Volume 15 ◽  
pp. 9049-9059
Author(s):  
Yusheng Zhao ◽  
Yue Zhang ◽  
Hui Kong ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document