Removal of CF4 from NF3 at the phase interface

Author(s):  
Alexander Cholach ◽  
Dmitri Yakovin
Keyword(s):  
2020 ◽  
Vol 787 (12) ◽  
pp. 34-39
Author(s):  
L.A. Abdrakhmanova ◽  
◽  
K.R. Khuziakhmetova ◽  
R.K. Nizamov ◽  
V.G. Khozin ◽  
...  

A comparison of small doses (up to 0.7 mass part) of impact strength modifiers of foreign and domestic production in polyvinylchloride-based compositions is given. Domestic acrylicnitrile- butadiene styrene modifiers (ABS) were used. The developed shock-resistant polyvinylchloride compositions in the presence of ABS elastifier have high melt fluidity, which has a beneficial effect on the recyclability. Changes in supramolecular structure were estimated from thermomechanical testing and electron microscopy data for both unfilled and filled PVC samples. Thermomechanical analysis showed that the presence of ABS modifier had a favorable effect on the technological properties of PVC-based samples. Electron-microscopic images indicate that in unfilled PVC samples, the heterogeneous PVC structure is expressed in the presence of ABS copolymer in comparison with foreign acrylic modifiers. When the compositions are filled with micro-heterogeneous structure in dispersion medium, the filler-polymer is formed by chalk particles, while ABS elasticifier is at the phase interface. Due to the peculiarities of the structure ABS has a higher degree of “fixation” on the surface of the chalk particles in comparison with the basic compositions containing acrylic modifiers, which with increasing chalk concentration leads to lower wear and tear on the top of the forming equipment.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 851
Author(s):  
Heng Ma ◽  
Huiyun Tian ◽  
Juncheng Xin ◽  
Zhongyu Cui

Electrochemical H charging, hydrogen permeation, and hydrogen-induced cracking (HIC) behavior of 690 MPa grade steel substrate and different heat-treatment states (annealed, quenched, normalized, tempered) are investigated by cyclic voltammetry (CV), hydrogen permeation, electrochemical H charging, and slow strain rate tensile test (SSRT). The results show that hydrogen diffuses through the steel with the highest rate in base metal and the lowest rate in annealed steel. The hydrogen-induced cracks in base metal show obvious step shape with tiny cracks near the main crack. The cracks of annealed steel are mainly distributed along pearlite. The crack propagation of quenched steel is mainly transgranular, while the hydrogen-induced crack propagation of tempered steel is along the prior austenite grain boundary. HIC sensitivity of base metal is the lowest due to its fine homogeneous grain structure, small hydrogen diffusion coefficient, and small hydrogen diffusion rate. There are many hydrogen traps in annealed steel, such as the two-phase interface which provides accommodation sites for H atoms and increases the HIC susceptibility.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 611
Author(s):  
Benshuai Chen ◽  
Guangchun Xiao ◽  
Mingdong Yi ◽  
Jingjie Zhang ◽  
Tingting Zhou ◽  
...  

In this paper, the Voronoimosaic model and the cohesive element method were used to simulate crack propagation in the microstructure of alumina/graphene composite ceramic tool materials. The effects of graphene characteristic size and volume content on the crack propagation behavior of microstructure model of alumina/graphene composite ceramics under different interfacial bonding strength were studied. When the phase interface is weak, the average energy release rate is the highest as the short diameter of graphene is 10–50 nm and the long diameter is 1600–2000 nm. When the phase interface is strong, the average energy release rate is the highest as the short diameter of graphene is 50–100 nm and the long diameter is 800–1200 nm. When the volume content of graphene is 0.50 vol.%, the average energy release rate reaches the maximum. When the velocity load is 0.005 m s−1, the simulation result is convergent. It is proven that the simulation results are in good agreement with the experimental phenomena.


Author(s):  
Jonas Zeifang ◽  
Andrea Beck

AbstractConsidering droplet phenomena at low Mach numbers, large differences in the magnitude of the occurring characteristic waves are presented. As acoustic phenomena often play a minor role in such applications, classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction. In this work, a novel scheme based on a specific level set ghost fluid method and an implicit-explicit (IMEX) flux splitting is proposed to overcome this timestep restriction. A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface. In this part of the domain, the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases. It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method. Applications to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 148
Author(s):  
Wenkai Wang ◽  
Zhiguo Qu ◽  
Xueliang Wang ◽  
Jianfei Zhang

Minimizing platinum (Pt) loading while reserving high reaction efficiency in the catalyst layer (CL) has been confirmed as one of the key issues in improving the performance and application of proton exchange membrane fuel cells (PEMFCs). To enhance the reaction efficiency of Pt catalyst in CL, the interfacial interactions in the three-phase interface, i.e., carbon, Pt, and ionomer should be first clarified. In this study, a molecular model containing carbon, Pt, and ionomer compositions is built and the radial distribution functions (RDFs), diffusion coefficient, water cluster morphology, and thermal conductivity are investigated after the equilibrium molecular dynamics (MD) and nonequilibrium MD simulations. The results indicate that increasing water content improves water aggregation and cluster interconnection, both of which benefit the transport of oxygen and proton in the CL. The growing amount of ionomer promotes proton transport but generates additional resistance to oxygen. Both the increase of water and ionomer improve the thermal conductivity of the C. The above-mentioned findings are expected to help design catalyst layers with optimized Pt content and enhanced reaction efficiency, and further improve the performance of PEMFCs.


Author(s):  
Qingming Liu ◽  
Björn Palm ◽  
Henryk Anglart

3D simulations on confined bubbles in micro-channels with diameter of 1.24 mm were conducted. The working fluid is R134a with a mass flux range from 125kg/m2s to 375kg/m2s. The VOF model is chosen to capture the 2 phase interface while the geo-construction method was used to re-construct the 2-phase interface. A heated boundary wall with heat flux varying from 15kW/m2 to 102kW/m2 is supplied. The wall temperature was calculated. The effects of mass flux and heat flux are studied. The shape of the bubble was predicted by the simulation successfully and the results show that they are independent of the initial shape. Both thin film evaporation and micro convection enhance the heat transfer. However, the micro convection which is caused by bubble motion has greater contribution to the total heat transfer at the stage of bubble growth studied.


Sign in / Sign up

Export Citation Format

Share Document