Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test

Author(s):  
Yongle Li ◽  
Peng Hu ◽  
Xinyu Xu ◽  
Junjie Qiu
2016 ◽  
Vol 20 (8) ◽  
pp. 1223-1231 ◽  
Author(s):  
Yongle Li ◽  
Xinyu Xu ◽  
Mingjin Zhang ◽  
Youlin Xu

Wind tunnel test and computational fluid dynamics simulation were conducted to study the wind characteristics at a bridge site in mountainous terrain. The upstream terrains were classified into three types: open terrain, open terrain with a steep slope close to the bridge, and open terrain with a ridge close to the bridge. Results obtained from the two methods were compared, including mean speed profiles in the vertical direction and variations of wind speed and angle of attack along the bridge deck. In addition, turbulence intensities at the bridge site obtained from wind tunnel test were discussed. For mean speed profiles in the vertical direction, two methods are reasonably close for open terrain, while mountain shielding effects are evident for open terrain with a steep slope for both the methods, but the extents of effects appear different. Wind speed and angle of attack along the bridge deck are mainly influenced by the local terrain. Strong downslope wind is generated at the lee slope for the case of wind normal to top of the ridge. The comparative results are expected to provide useful references for the study of wind characteristics in mountainous terrain in the future.


2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

Author(s):  
Bruno Ricardo Massucatto Padilha ◽  
Guilherme Barufaldi ◽  
ROBERTO GIL ANNES DA SILVA

2016 ◽  
Vol 7 (2) ◽  
pp. 131-138
Author(s):  
Ivransa Zuhdi Pane

Data post-processing plays important roles in a wind tunnel test, especially in supporting the validation of the test results and further data analysis related to the design activities of the test objects. One effective solution to carry out the data post-processing in an automated productive manner, and thus eliminate the cumbersome conventional manual way, is building a software which is able to execute calculations and have abilities in presenting and analyzing the data in accordance with the post-processing requirement. Through several prototype development cycles, this work attempts to engineer and realize such software to enhance the overall wind tunnel test activities. Index Terms—software engineering, wind tunnel test, data post-processing, prototype, pseudocode


2021 ◽  
Vol 11 (8) ◽  
pp. 3315
Author(s):  
Fabio Rizzo

Experimental wind tunnel test results are affected by acquisition times because extreme pressure peak statistics depend on the length of acquisition records. This is also true for dynamic tests on aeroelastic models where the structural response of the scale model is affected by aerodynamic damping and by random vortex shedding. This paper investigates the acquisition time dependence of linear transformation through singular value decomposition (SVD) and its correlation with floor accelerometric signals acquired during wind tunnel aeroelastic testing of a scale model high-rise building. Particular attention was given to the variability of eigenvectors, singular values and the correlation coefficient for two wind angles and thirteen different wind velocities. The cumulative distribution function of empirical magnitudes was fitted with numerical cumulative density function (CDF). Kolmogorov–Smirnov test results are also discussed.


Sign in / Sign up

Export Citation Format

Share Document