Field measurements and wind tunnel investigation of wind characteristics at a bridge site in a Y-shaped valley

2020 ◽  
Vol 202 ◽  
pp. 104199 ◽  
Author(s):  
Jia-Ling Song ◽  
Jia-Wu Li ◽  
Richard G.J. Flay
2016 ◽  
Vol 20 (8) ◽  
pp. 1223-1231 ◽  
Author(s):  
Yongle Li ◽  
Xinyu Xu ◽  
Mingjin Zhang ◽  
Youlin Xu

Wind tunnel test and computational fluid dynamics simulation were conducted to study the wind characteristics at a bridge site in mountainous terrain. The upstream terrains were classified into three types: open terrain, open terrain with a steep slope close to the bridge, and open terrain with a ridge close to the bridge. Results obtained from the two methods were compared, including mean speed profiles in the vertical direction and variations of wind speed and angle of attack along the bridge deck. In addition, turbulence intensities at the bridge site obtained from wind tunnel test were discussed. For mean speed profiles in the vertical direction, two methods are reasonably close for open terrain, while mountain shielding effects are evident for open terrain with a steep slope for both the methods, but the extents of effects appear different. Wind speed and angle of attack along the bridge deck are mainly influenced by the local terrain. Strong downslope wind is generated at the lee slope for the case of wind normal to top of the ridge. The comparative results are expected to provide useful references for the study of wind characteristics in mountainous terrain in the future.


2020 ◽  
Vol 12 (6) ◽  
pp. 2467 ◽  
Author(s):  
Fei Zhao ◽  
Yihan Gao ◽  
Tengyuan Wang ◽  
Jinsha Yuan ◽  
Xiaoxia Gao

To study the wake development characteristics of wind farms in complex terrains, two different types of Light Detection and Ranging (LiDAR) were used to conduct the field measurements in a mountain wind farm in Hebei Province, China. Under two different incoming wake conditions, the influence of wind shear, terrain and incoming wind characteristics on the development trend of wake was analyzed. The results showed that the existence of wind shear effect causes asymmetric distribution of wind speed in the wake region. The relief of the terrain behind the turbine indicated a subsidence of the wake centerline, which had a linear relationship with the topography altitudes. The wake recovery rates were calculated, which comprehensively validated the conclusion that the wake recovery rate is determined by both the incoming wind turbulence intensity in the wake and the magnitude of the wind speed.


2005 ◽  
Vol 127 (2) ◽  
pp. 185-191 ◽  
Author(s):  
T. Maeda ◽  
E. Ismaili ◽  
H. Kawabuchi ◽  
Y. Kamada

This paper exploits blade surface pressure data acquired by testing a three-bladed upwind turbine operating in the field. Data were collected for a rotor blade at spanwise 0.7R with the rotor disc at zero yaw. Then, for the same blade, surface pressure data were acquired by testing in a wind tunnel. Analyses compared aerodynamic forces and surface pressure distributions under field conditions against analogous baseline data acquired from the wind tunnel data. The results show that aerodynamic performance of the section 70%, for local angle of attack below static stall, is similar for free stream and wind tunnel conditions and resemblances those commonly observed on two-dimensional aerofoils near stall. For post-stall flow, it is presumed that the exhibited differences are attributes of the differences on the Reynolds numbers at which the experiments were conducted.


2020 ◽  
Vol 13 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
Dennis Niedermeier ◽  
Jens Voigtländer ◽  
Silvio Schmalfuß ◽  
Daniel Busch ◽  
Jörg Schumacher ◽  
...  

Abstract. The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.


2006 ◽  
Vol 52 (179) ◽  
pp. 585-596 ◽  
Author(s):  
Andrew Clifton ◽  
Jean-Daniel Rüedi ◽  
Michael Lehning

AbstractWind tunnel measurements of snowdrift in a turbulent, logarithmic velocity boundary layer have been made in Davos, Switzerland, using natural snow. Regression analysis gives the drift threshold friction velocity (u*t), assuming an exponential drift profile and a simple drift to friction velocity relationship. Measurements over 15 snow covers show that u*t is influenced more by snow density and particle size than by ambient temperature and humidity, and varies from 0.27 to 0.69 ms–1. Schmidt’s threshold algorithm and a modified version used in SNOWPACK (a snow-cover model) agree well with observations if small bond sizes are assumed. Using particle hydraulic diameters, obtained from image processing, Bagnold’s threshold parameter is 0.18. Roughness lengths (z0) vary between snow covers but are constant until the start of drift. Threshold roughness lengths are proportional to . The influence of macroscopic objects on the roughness length is shown by the lower values measured over the smooth and flat snow surface of the wind tunnel (0.04 ≤ z0 ≤ 0.13 mm), compared to field measurements. Mean drifting-snow grain sizes for mainly new and partly decomposed snow are 100–175 μm, and independent of surface particle size.


2000 ◽  
Vol 95 (3) ◽  
pp. 457-495 ◽  
Author(s):  
Michael D. Novak ◽  
Jon S. Warland ◽  
Alberto L Orchansky ◽  
Rick Ketler ◽  
Steven Green

2019 ◽  
Vol 22 (7) ◽  
pp. 1783-1795 ◽  
Author(s):  
Hongmiao Jing ◽  
Haili Liao ◽  
Cunming Ma ◽  
Kejian Chen

The influence of elevated water levels on wind field characteristics at bridge sites owing to hydroelectric power stations plays an important role in bridge engineering, particularly in mountainous valley regions. To investigate this issue, a comparative experimental study, which uses a topographic model with two water level states for determining the influence on wind field characteristics at the proposed bridge site located in a mountainous valley area, was conducted in the XNJD-3 wind tunnel at Southwest Jiaotong University, Chengdu, PR China. The altitude difference between the two water level states was approximately 200 m, whereas uniform and D-type boundary layer air inflow conditions were adopted during the wind tunnel test, respectively. The wind speed at the bridge girder and profile of the 1/4, mid, and 3/4 spans were recorded during the experiment. The test results indicated that after the water level was raised, the mean wind speed (or speed-up factor) along the bridge girder decreased by approximately 10%, and the values of the wind profile also decreased. However, the wind profile curve shapes remained approximately unchanged, and the wind attack angle was significantly transformed by approximately 5° in certain locations of the bridge girder. Moreover, the variation in the water level had a negligible influence on the turbulence intensities, turbulence integral length scales, probability distribution of fluctuating wind components, and turbulent wind spectra along the bridge girder. Therefore, as the water level in the canyon rises, the wind field characteristics at the bridge site tend to be conducive to bridge safety. Therefore, long-span bridges located in mountainous valley areas should be designed appropriately according to the expected minimum water level of the river.


Author(s):  
Chuanjin Yu ◽  
Yongle Li ◽  
Mingjin Zhang ◽  
Yi Zhang ◽  
Guanghao Zhai

Sign in / Sign up

Export Citation Format

Share Document