Noble metal -doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light

2019 ◽  
Vol 32 ◽  
pp. 100954 ◽  
Author(s):  
Nguyen Minh Viet ◽  
Do Quang Trung ◽  
Bach Long Giang ◽  
Nguyen Le Minh Tri ◽  
Phuong Thao ◽  
...  
Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 983 ◽  
Author(s):  
I. Neelakanta Reddy ◽  
N. Jayashree ◽  
V. Manjunath ◽  
Dongseob Kim ◽  
Jaesool Shim

Recently, the engineering of optical bandgaps and morphological properties of graphitic carbon nitride (g-C3N4) has attracted significant research attention for photoelectrodes and environmental remediation owing to its low-cost synthesis, availability of raw materials, and thermal physical–chemical stability. However, the photoelectrochemical activity of g-C3N4-based photoelectrodes is considerably poor due to their high electron–hole recombination rate, poor conductivity, low quantum efficiency, and active catalytic sites. Synthesized Ni metal-doped g-C3N4 nanostructures can improve the light absorption property and considerably increase the electron–hole separation and charge transfer kinetics, thereby initiating exceptionally enhanced photoelectrochemical activity under visible-light irradiation. In the present study, Ni dopant material was found to evince a significant effect on the structural, morphological, and optical properties of g-C3N4 nanostructures. The optical bandgap of the synthesized photoelectrodes was varied from 2.53 to 2.18 eV with increasing Ni dopant concentration. The optimized 0.4 mol% Ni-doped g-C3N4 photoelectrode showed a noticeably improved six-fold photocurrent density compared to pure g-C3N4. The significant improvement in photoanode performance is attributable to the synergistic effects of enriched light absorption, enhanced charge transfer kinetics, photoelectrode/aqueous electrolyte interface, and additional active catalytic sites for photoelectrochemical activity.


2019 ◽  
Vol 23 (12) ◽  
pp. 1284-1306
Author(s):  
Vijai K. Rai ◽  
Fooleswar Verma ◽  
Suhasini Mahata ◽  
Smita R. Bhardiya ◽  
Manorama Singh ◽  
...  

The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 411
Author(s):  
Taoreed O. Owolabi ◽  
Mohd Amiruddin Abd Rahman

Graphitic carbon nitride is a stable and distinct two dimensional carbon-based polymeric semiconductor with remarkable potentials in organic pollutants degradation, chemical sensors, the reduction of CO2, water splitting and other photocatalytic applications. Efficient utilization of this material is hampered by the nature of its band gap and the rapid recombination of electron-hole pairs. Heteroatom incorporation due to doping alters the symmetry of the semiconductor and has been among the adopted strategies to tailor the band gap for enhancing the visible-light harvesting capacity of the material. Electron modulation and enhancement of reaction active sites due to doping as evident from the change in specific surface area of doped graphitic carbon nitride is employed in this work for modeling the associated band gap using hybrid genetic algorithm-based support vector regression (GSVR) and extreme learning machine (ELM). The developed GSVR performs better than ELM-SINE (with sine activation function), ELM-TRANBAS (with triangular basis activation function) and ELM-SIG (with sigmoid activation function) model with performance enhancement of 69.92%, 73.59% and 73.67%, respectively, on the basis of root mean square error as a measure of performance. The four developed models are also compared using correlation coefficient and mean absolute error while the developed GSVR demonstrates a high degree of precision and robustness. The excellent generalization and predictive strength of the developed models would ultimately facilitate quick determination of the band gap of doped graphitic carbon nitride and enhance its visible-light harvesting capacity for various photocatalytic applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22652-22660
Author(s):  
Zengyu Cen ◽  
Yuna Kang ◽  
Rong Lu ◽  
Anchi Yu

H2O2 treated K-doped graphitic carbon nitride presents an enhanced visible light absorption, which is due to the electrostatic attraction between K ions and OOH ions inside graphitic carbon nitride.


Sign in / Sign up

Export Citation Format

Share Document